首页> 外文期刊>Spectrochimica Acta, Part B. Atomic Spectroscopy >Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques
【24h】

Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

机译:使用基于实验室的X射线技术对聚合物包埋的薄膜进行无损元素定量

获取原文
获取原文并翻译 | 示例
           

摘要

Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 um-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.
机译:薄涂层对于包括能源(例如太阳能电池,电池),消费电子产品(例如LCD显示器,计算机芯片)和医疗设备(例如植入物)在内的各种行业都很重要。这些涂层通常是高度均匀的层,其厚度范围从单层到几微米。表征这些高度均匀的涂层的厚度,元素组成和均匀性都是最重要的,但是,当这些层在地下时,要获得这些测量值可能会更加困难,并且必须进行无损检查。共焦微X射线荧光(共焦MXRF)和纳米级X射线计算机断层扫描(nano-CT)结合在一起可以进行这些测量,同时满足表征薄膜所需的灵敏度和分辨率要求。通过这种集成方法,可以在三个维度上测量元素组成,原子百分比,位置和均匀性。共聚焦MXRF使用一对多毛细管光学器件聚焦并收集来自3D空间受限共聚焦体积的材料的X射线。由于空间的限制,可以基于为每个元素收集的元素特征性X射线荧光来表征(组成不同的)各个层。相比之下,纳米级X射线计算机断层扫描可以以很高的分辨率(低至50 nm)对层成像,以精确测量嵌入层的厚度。如果层的厚度和原子密度均未知,则必须同时使用这两种技术。该手稿将证明可以测量嵌入的薄膜层的原子百分数并确认其制造质量。作为原理上的证明,在Omega Laser Facility和National Ignition Facility进行的激光等离子体实验中,测量了嵌入聚合物胶囊中的1.5原子百分比,2 um厚的Ge层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号