...
首页> 外文期刊>Small >Complementary Electrical and Spectroscopic Detection Assays with On-Wire-Lithography-Based Nanostructures
【24h】

Complementary Electrical and Spectroscopic Detection Assays with On-Wire-Lithography-Based Nanostructures

机译:基于在线光刻的纳米结构的互补电学和光谱学检测方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The ability to sensitively detect biomolecules and monitor complex biological processes has enabled many important fundamental and technological advances in the life sciences.~[1] These include novel and powerful ways of diagnosing disease, pharmaceutical screening procedures,and a variety of biosafety applications.~[2–4] Over the past couple of decades, a number of different detection methods have been developed for highsensitivity biomolecule detection.~[5–19] Many of these rely on nanostructures with novel signal transduction or signal amplification modes. Most can be categorized either as spectroscopic~[5–11] or electrical approaches~[12–17] and have strengths and weaknesses depending upon the analyte, environment, and intended uses.~[1–3] With researchers gaining increasing control over the architectural parameters of nanostructures, one can begin to envision systems with multiple layers of complexity and corresponding functional capabilities. Electrical approaches are attractive because in principle they can be miniaturized in the form of relatively simple and even portable devices.~[13,14,17] Spectroscopic approaches often rely on an additional labeling material and have the virtue of offering greater amounts of chemical information about the analytes being probed.~[6,8] The combination of these two assay formats within the context of a single nanostructure can provide built-in internal assay controls~[20] and a way to independently measure multiple steps in a complex biological process. Herein, we describe how one can use segmented nanostructures~[21–25] prepared by on-wire lithography (OWL)~[23,24] to create a system with two orthogonally functional components: one that behaves as a diode-like detection system with electrical readout, and the other that acts as a Raman enhancing device that allows one to spectroscopically probe different but related reactions that occur on the same device (Figure 1A).
机译:灵敏地检测生物分子并监测复杂的生物过程的能力使生命科学领域取得了许多重要的基础和技术进步。[1]其中包括新颖而强大的疾病诊断方法,药物筛选程序以及各种生物安全应用。 [2-4]在过去的几十年中,已经开发出了许多用于高灵敏度生物分子检测的检测方法。[5-19]其中许多方法依赖于具有新颖信号转导或信号放大模式的纳米结构。大多数可以归类为光谱学[5-11]或电学方法[12-17],其优缺点取决于分析物,环境和预期用途。[1-3]随着研究人员越来越多地控制在纳米结构的建筑参数方面,人们可以开始设想具有多层复杂性和相应功能的系统。电气方法之所以吸引人,是因为原则上它们可以以相对简单甚至是便携式设备的形式进行小型化。[13,14,17]光谱方法通常依赖于附加的标记材料,并具有提供大量化学信息的优点。 〜[6,8]在单个纳米结构的背景下,这两种测定形式的组合可提供内置的内部测定对照〜[20],以及一种独立测量复杂生物中多个步骤的方法处理。本文中,我们描述了如何使用在线光刻(OWL)〜[23,24]制备的分段纳米结构[21-25]创建具有两个正交功能组件的系统:一个表现为类似于二极管的检测系统具有电读出功能,另一个用作拉曼增强装置,使一个装置能够以光谱法探测同一装置上发生的不同但相关的反应(图1A)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号