...
首页> 外文期刊>Silicates Industriels: Ceramic Science and Technology >Finite element modelling of thermal stresses in ceramic-matrix composites
【24h】

Finite element modelling of thermal stresses in ceramic-matrix composites

机译:陶瓷基复合材料热应力的有限元建模

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of computational prediction and microstructural control in ceramic-matrix composites is a powerful method for the better understanding of CMC behaviour In the present work sialon and zirconia matrices have been separatelyreinforced with carbon microbeads and fibres using standard fabrication techniques based on cold isostatic pressing and controlled atmosphere firing. The result of such processing is that residual stresses arise during cooling from sintering temperatureas a result of the difference in coefficient of thermal expansion between the matrix and reinforcement and these stresses have a major effect on the mechanical behaviour of the material. This study compares the behaviour of sialon and zirconia compositesreinforced with carbon microbeads and short fibres and shows that in the case of sialon the hardness decreases and toughness increases, but for zirconia there is a decrease in both strength and toughness compared to the monolithic material.The behaviour of these materials has also been assessed by finite element calculation of the thermal stresses. Assuming that chemical incompatibility between the two phases dues not result in undue degradation of the fibre or matrix (that is, there is adiscontinuous interface) then the stress state of the composite at room temperature can be modelled. The results are consistent with the experimental observations and give some insight into the behaviour of the interface between the matrix andreinforcement.
机译:陶瓷基复合材料中的计算预测与微结构控制相结合是一种更好地了解CMC行为的有力方法。在本研究中,赛隆和氧化锆基体已使用基于碳纤维微珠和碳纤维的纤维,采用基于冷等静压的标准制造技术进行了强化。控制气氛的射击。这种处理的结果是,由于基体和增强材料之间的热膨胀系数不同,在烧结过程中冷却过程中会产生残余应力,这些应力对材料的机械性能产生重大影响。这项研究比较了碳微珠和短纤维增强的sialon和氧化锆复合材料的行为,结果表明,在sialon的情况下,硬度降低而韧性增加,但对于氧化锆,与整体材料相比,强度和韧性均降低。这些材料的行为也已经通过热应力的有限元计算来评估。假设由于两相之间的化学不相容性不会导致纤维或基体过度降解(也就是说,存在不连续的界面),则可以对复合材料在室温下的应力状态进行建模。结果与实验观察结果一致,并对基体与增强材料之间的界面行为提供了一些见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号