首页> 外文期刊>SIAM Journal on Optimization: A Publication of the Society for Industrial and Applied Mathematics >On the lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems
【24h】

On the lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems

机译:关于凸多项式优化问题的半定规划松弛的lasserre层次

获取原文
获取原文并翻译 | 示例

摘要

The Lasserre hierarchy of semidefinite programming approximations to convex polynomial optimization problems is known to converge finitely under some assumptions. [J. B. Lasserre, Convexity in semialgebraic geometry and polynomial optimization, SIAM J. Optim., 19 (2009), pp. 1995-2014]. We give a new proof of the finite convergence property under weaker assumptions than were known before. In addition, we show that-under the assumptions for finite convergence-the number of steps needed for convergence depends on more than the input size of the problem.
机译:已知凸多项式优化问题的半定规划近似的Lasserre层次结构在某些假设下会收敛。 [J. B. Lasserre,《半代数几何的凸性和多项式优化》,SIAM J. Optim。,19(2009),第1995-2014页。在比以前更弱的假设下,我们给出了有限收敛性的新证明。另外,我们表明,在有限收敛的假设下,收敛所需的步数更多地取决于问题的输入范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号