首页> 外文期刊>SIAM Journal on Control and Optimization >L∞-NULL CONTROLLABILITY FOR THE HEAT EQUATION AND ITS CONSEQUENCES FOR THE TIME OPTIMAL CONTROL PROBLEM
【24h】

L∞-NULL CONTROLLABILITY FOR THE HEAT EQUATION AND ITS CONSEQUENCES FOR THE TIME OPTIMAL CONTROL PROBLEM

机译:时间最优控制问题的热方程的L∞-NULL可控制性及其后果

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish a certain L∞-null controllability for the internally con_trolled heat equation in Ω x [0, T], with the control restricted to a product set of an open nonempty subset in Ω and a subset of positive measure in the interval [0, T]. Based on this, we obtain a bang-bang principle for the time optimal control of the heat equation with controls taken from the set U_(ad) = {u(_, t) : [0, __)_úL~2(Ω) measurable; u(_, t) E U, a.e. in t}, where U is a closed and bounded subset of L~2(Ω). Namely, each optimal control u~*(_,t) of the problem satisfies necessarily the bang-bang property: u~* (_, t) E ’aU for almost all t[0, T~*], where ay denotes the boundary of the set U and T* is the optimal time. We also get the uniqueness of the optimal control when the target set S is convex and the control set U is a closed ball.
机译:在本文中,我们为Ωx [0,T]中的内部受控热方程建立了一定的L∞-null可控性,其中控制仅限于Ω中的开放非空子集和η中的正度量子集的乘积。间隔[0,T]。基于此,我们获得了热方程的时间最优控制的爆炸原理,其控制取自集合U_(ad)= {u(_,t):[0,__)_úL〜2(Ω)可测量的u(_,t)E U,a.e.在t}中,其中U是L〜2(Ω)的封闭有界子集。即,问题的每个最优控制u〜*(_,t)都必须满足Bang-bang属性:u_ *(_,t)E'aU对于几乎所有t [0,T〜*],其中ay表示集合U和T *的边界是最佳时间。当目标集合S为凸形且控制集合U为闭合球时,我们还获得了最优控制的唯一性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号