首页> 外文期刊>Molecular Neurobiology >Inhibitory synaptic regulation of motoneurons: A new target of disease mechanisms in amyotrophic lateral sclerosis
【24h】

Inhibitory synaptic regulation of motoneurons: A new target of disease mechanisms in amyotrophic lateral sclerosis

机译:抑制运动神经元的突触调节:肌萎缩性侧索硬化的疾病机制的新目标。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABA A receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABA A receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
机译:肌萎缩性侧索硬化症(ALS)是成人发病的第三种最常见的神经退行性疾病。它会引起运动神经元的变性,并且由于瘫痪而致命,尤其是呼吸肌。 ALS可以被遗传,并且已经确定了特定的致病基因,但是导致ALS中运动神经元死亡的机制尚不清楚。 ALS没有有效的治疗方法。一项关于ALS发病机理的研究充分的理论涉及错误的RNA编辑和特定谷氨酸受体的异常激活以及谷氨酸转运失败,从而导致谷氨酸兴奋性毒性。然而,兴奋性毒性理论受到抗谷氨酸药物不能在临床上具有重大疾病缓解作用的挑战。然而,上下运动神经元的过度兴奋性是人ALS和ALS转基因(tg)小鼠模型的特征。动力神经元的兴奋性受到突触前甘氨酸能和GABA能神经以及突触后甘氨酸受体(GlyR)和GABA A受体介导的突触抑制的强烈调节。然而,尽管在人ALS中的发现表明它们可能受到影响,但在实验模型中尚未充分研究调节运动神经元抑制系统的完整性。我们在tg小鼠中发现了表达人超氧化物歧化酶-1(hSOD1)的突变形式,并带有Gly93→Ala取代(G93A-hSOD1),引起家族性ALS,脊髓中神经元的子集退化。在G93A-hSOD1小鼠中明显出现运动神经元变性之前,脊髓运动神经元的抑制性甘氨酸能神经支配作用不足。与野生型运动神经元相比,这些ALS小鼠中的动子神经素还具有不足的突触抑制作用,这表现为较小的GlyR电流,较小的GlyR簇在它们的质膜上以及较低的GlyR1αmRNA表达。相反,ALS小鼠运动神经元的GABA能神经支配和GABA A受体功能似乎正常。由中间神经元和运动神经元GlyRs的功能异常引起的异常突触抑制是揭示ALS发病机制的新方向,该机制可能与ALS的新疗法有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号