首页> 外文期刊>Mathematical logic quarterly: MLQ >Infinite Wordle and the mastermind numbers
【24h】

Infinite Wordle and the mastermind numbers

机译:无限的 Wordle 和策划者数字

获取原文
获取原文并翻译 | 示例

摘要

Abstract I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game‐theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of n letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in n steps. Meanwhile, the mastermind number m$mathbbm {m}$, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length ω over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC$mathsf {ZFC}$, for it is provably equal to the eventually different number d(≠∗)$mathfrak {d}({ne ^*})$, which is the same as the covering number of the meager ideal cov(M)$operatorname{mbox{cov}}(mathcal {M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.
机译:摘要 我考虑了游戏 Wordle 和 Mastermind 的自然无限变化,以及它们的博弈论变化 Absurdle 和 Madstermind,考虑到这些游戏具有无限长的单词和无限的颜色序列,并允许超限的游戏玩法。对于每个游戏,都有一个秘密代码字被隐藏起来,密码破译者试图通过进行一系列猜测并接收有关其准确性的反馈来发现它。在 Wordle 中,对于由 n 个字母组成的有限字母表中的任何大小的单词,包括无限单词甚至不可数单词,密码破译者仍然可以始终以 n 步获胜。同时,主脑数 m$mathbbm {m}$,定义为无穷主脑中长度为 ω 的序列在无重复的颜色集上的最小获胜猜测集,是不可数的,但确切的值被证明独立于 ZFC$mathsf {ZFC}$,因为它可以证明等于最终不同的数字 d(≠∗)$mathfrak {d}({ne ^*})$, 这与微薄的理想 cov(M)$operatorname{mbox{cov}}(mathcal {M})$ 的覆盖数相同。因此,我把所有为游戏的自然变化定义的各种主脑数字都放入了连续体的基本特征层次结构中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号