首页> 外文期刊>The Journal of Engineering >Research on the strategy of locating abnormal data in internet of things management platform based on improved modified particle swarm optimization convolutional neural network algorithm
【24h】

Research on the strategy of locating abnormal data in internet of things management platform based on improved modified particle swarm optimization convolutional neural network algorithm

机译:基于改进修正粒子群优化卷积神经网络算法的物联网管理平台异常数据定位策略研究

获取原文
获取原文并翻译 | 示例

摘要

The Internet of Things (IOT) management platform is used to manage and transmit data from a variety of terminal devices in the power system. In terms of detecting abnormal data, the existing IOT management platform has a low data processing efficiency and a high error rate. In addition, the optimal selection and determination of the structural parameters of a convolutional neural network (CNN) have a substantial effect on its prediction performance. On this basis, the paper proposes a decision algorithm for locating anomalous data in an IOT integrated management platform using a CNN and a global optimization decision of key structural parameters of a CNN using an improved particle swarm optimization (APSO) algorithm. Initially, an index model is developed to identify whether the data obtained from the IOT management platform is abnormal. Second, the structure of the CNN-based anomaly detection approach is investigated. Next, an improved particle swarm optimization approach is designed to optimize the structural parameters of the CNN, and an APSO-CNN with higher performance for anomalous data localization is constructed. Using the Adam optimizer, the accuracy, feasibility, and efficiency of the established method were assessed. The results demonstrate that the developed APSO-CNN-based decision method for anomaly data localization offers significant advantages in terms of precision and execution speed, with potentially intriguing application potential.
机译:物联网(IOT)管理平台用于对电力系统中的各种终端设备进行管理和传输数据。在异常数据检测方面,现有的物联网管理平台数据处理效率低,错误率高。此外,卷积神经网络(CNN)结构参数的最优选择和确定对其预测性能有重要影响。在此基础上,提出了一种利用CNN定位物联网综合管理平台中异常数据的决策算法,以及利用改进粒子群优化(APSO)算法的CNN关键结构参数全局优化决策。首先,建立指标模型,对从物联网管理平台获取的数据是否异常进行识别。其次,研究了基于CNN的异常检测方法的结构;接下来,设计了一种改进的粒子群优化方法,对CNN的结构参数进行优化,并构建了具有更高性能的异常数据定位APSO-CNN。利用Adam优化器,对所建立方法的准确性、可行性和效率进行了评估。结果表明,基于APSO-CNN的异常数据定位决策方法在精度和执行速度方面具有显著优势,具有潜在的应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号