首页> 美国卫生研究院文献>other >Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce
【2h】

Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

机译:大数据:基于MapReduce的并行粒子群优化-反向传播神经网络算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
机译:BP神经网络可以解决复杂的随机非线性映射问题。因此,它可以应用于各种各样的问题。但是,随着样本数量的增加,训练BP神经网络所需的时间变得很长。而且,分类精度也降低。为了提高BP神经网络算法的分类精度和运行效率,我们提出了一种基于Hadoop平台上基于MapReduce的粒子群优化(PSO)优化的BP神经网络的并行设计和实现方法。并行设计。 PSO算法用于优化BP神经网络的初始权重和阈值,并提高分类算法的准确性。利用MapReduce并行编程模型来实现BP算法的并行处理,从而解决了BP神经网络处理大数据时的硬件和通信开销问题。使用SUN数据库中的场景图像库构建了5种不同比例的数据集。并行PSO-BP神经网络算法的分类精度约为92%,系统效率约为0.85,在处理大数据时具有明显的优势。这项研究提出的算法证明了更高的分类精度和更高的时间效率,这代表了将并行处理应用于大数据智能算法所获得的重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号