首页> 外文期刊>IEEE Transactions on Automatic Control >A Unified Distributed Method for Constrained Networked Optimization via Saddle-Point Dynamics
【24h】

A Unified Distributed Method for Constrained Networked Optimization via Saddle-Point Dynamics

机译:一种基于Saddle-Point Dynamics的约束网络优化的统一分布式方法

获取原文
获取原文并翻译 | 示例

摘要

This article develops a unified distributed method for solving two classes of constrained networked optimization problems, i.e., optimal consensus problem and resource allocation problem with nonidentical set constraints. We first transform these two constrained networked optimization problems into a unified saddle-point problem framework with set constraints. Subsequently, two projection-based primal–dual algorithms via optimistic gradient descent ascent method and extra-gradient method are developed for solving constrained saddle-point problems. It is shown that the developed algorithms achieve exact convergence to a saddle point with an ergodic convergence rate $O(1/k)$ for general convex–concave functions. Based on the proposed primal-dual algorithms via saddle-point dynamics, we develop unified distributed algorithm design and convergence analysis for these two networked optimization problems. Finally, two numerical examples are presented to demonstrate the theoretical results.
机译:本文发展了一种统一的分布式方法,用于求解两类约束网络优化问题,即最优共识问题和具有非相同集约束的资源分配问题。我们首先将这两个受约束的网络优化问题转化为一个具有设定约束的统一鞍点问题框架。随后,提出了两种基于投影的初偶算法,即乐观梯度下降上升法和超梯度法,用于求解约束鞍点问题。结果表明,所开发的算法在一般凸凹函数中实现了对鞍点的精确收敛,遍历收敛率为$O(1/k)$。基于提出的基于鞍点动力学的初对偶算法,针对这两个网络化优化问题,开发了统一的分布式算法设计和收敛分析方法。最后,通过两个数值算例验证了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号