首页> 外文期刊>RNA >Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.
【24h】

Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.

机译:SAM-II核糖开关的代谢物识别和特异性的原子级见解。

获取原文
获取原文并翻译 | 示例
           

摘要

Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms.
机译:尽管S-腺苷甲硫氨酸(SAM)的代谢副产物S-腺苷同型半胱氨酸(SAH)与SAM的区别仅在于单个甲基和整体正电荷,但SAH与​​SAM-II核糖开关的结合减少了1000倍以上亲和力比SAM强。使用原子分子动力学模拟,我们研究了通过SAM-II核糖开关在配体识别中具有如此高选择性的分子基础。 SAM的生物合成仅生成(S,S)立体异构体,并且(S,S)-SAM可以自发转化为(R,S)形式。因此,我们还研究了(R,S)-SAM与SAM-II结合的作用及其潜在的生物学功能。我们发现(S,S)-和(R,S)-SAM的SAM-II结合中熵的不利损失比SAH更大,这可以通过稳定与核糖开关的静电相互作用来补偿。 SAM上带正电荷的sulf部分起着关键离子相互作用形成的关键锚点的作用,因为它正好适合带负电荷的结合袋。相反,SAH及​​其在硫上的孤对电子,在SAM-II的结合口袋中受到排斥,并且在焓上不稳定。与未结合的核糖开关相似,在SAH存在下,SAM-II的假结结构没有完全形成,因此暴露了Shine-Dalgarno序列。与SAM不同,这可以进一步促进核糖体组装和翻译启动。我们对不存在配体以及与SAM或SAH结合时由SAM-II采样的构象集合的分析表明,配体结合遵循构象选择和诱导拟合机制的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号