首页> 外文会议>応用物理学会秋季学術講演会;応用物理学会 >An atomic-level insight into the surface step edge of GaN
【24h】

An atomic-level insight into the surface step edge of GaN

机译:原子级洞察GaN的表面台阶边缘

获取原文

摘要

Power semiconductor devices are playing a leading role in modern power electronic devices. Despite beingSi still the primary material in electronic industry, a general consensus has been reached on the fact theSi-based technology is now reaching its intrinsic limits. Given this scenario, GaN seems to be the bestcandidate for the next leap forward. The major figures of merit of the wide band-gap GaN is a lowerelectric power consumption, with consequent decrease of the excess of heat produced, and a higher yield interms of both emitted light and generated power. For a massive production of GaN, high-quality epitaxialGaN films with atomically smooth, damage-free surfaces represent a fundamental request. Metalorganicvapor phase epitaxy (MOVPE) is nowadays the most accredited method for a mass production of highquality GaN crystals [1]. In MOVPE, trimethylgallium (TMG) and ammonia are the typical gas-phaseprecursors carried to the growth section by a carrier gas, H2 or N2. Hence, a detailed knowledge of thegrowth mechanism under H2 carrier gas conditions is highly desirable. Kusaba and coworkers reportedthat the growing surface under H2 carrier gas condition is the 3Ga–H surface. In this presentation, we makeuse of first-principles calculations as implemented in our real space density functional theory (RSDFT)package, to shed some light on the step edge structure of GaN under H2 carrier gas condition .
机译:功率半导体器件在现代电力电子设备中发挥着主导作用。尽管是 SI仍然是电子行业的主要材料,已经达成了一般共识的事实 基于SI的技术现已达到其内在限制。鉴于这种情况,Ga似乎是最好的 候选人的下一个跨越式。宽带间隙GaN的主要数据是较低的 电力消耗,随之地减少产生的过量,产量较高 发出的光和产生功率的术语。用于大规模生产GaN,高品质的外延 GaN电影具有原子平滑,无损坏的表面代表了基本要求。金属有机物 蒸汽阶段外延(MOVPE)如今是大规模生产高的最受认证的方法 质量GaN晶体[1]。在MOVPE中,三甲基镓(TMG)和氨是典型的气相 通过载气,H 2或N 2携带到生长部分的前体。因此,详细了解 在H 2载气条件下的生长机制是非常理想的。 Kusaba和Coworkers报道 在H 2载气条件下的生长表面是3Ga-H表面。在这个演示中,我们制作 在我们的真实空间密度泛函(RSDFT)中使用第一原理计算 包装,在H2载气条件下缩小GaN的步进边缘结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号