首页> 外文期刊>Advanced Robotics: The International Journal of the Robotics Society of Japan >Predicting Object Dynamics From Visual Images Through Active Sensing Experiences
【24h】

Predicting Object Dynamics From Visual Images Through Active Sensing Experiences

机译:通过主动传感体验从视觉图像中预测物体动态

获取原文
获取原文并翻译 | 示例

摘要

Prediction of dynamic features is an important task for determining the manipulation strategies of an object. This paper presents a technique for predicting dynamics of objects relative to the robot's motion from visual images. During the training phase, the authors use the recurrent neural network with parametric bias (RNNPB) to self-organize the dynamics of objects manipulated by the robot into the PB space. The acquired PB values, static images of objects and robot motor values are input into a hierarchical neural network to link the images to dynamic features (PB values). The neural network extracts prominent features that each induce object dynamics. For prediction of the motion sequence of an unknown object, the static image of the object and robot motor value are input into the neural network to calculate the PB values. By inputting the PB values into the closed loop RNNPB, the predicted movements of the object relative to the robot motion are calculated recursively. Experiments were conducted with the humanoid robot Robovie-IIs pushing objects at different heights. The results of the experiment predicting the dynamics of target objects proved that the technique is efficient for predicting the dynamics of the objects.
机译:动态特征的预测是确定物体操纵策略的重要任务。本文介绍了一种从视觉图像中预测物体相对于机器人运动的动力学的技术。在训练阶段,作者使用具有参数偏差的递归神经网络(RNNPB)将机器人操纵的物体的动力学自组织到PB空间中。将采集的PB值、物体的静态图像和机器人电机值输入到分层神经网络中,将图像链接到动态特征(PB值)。神经网络提取每个特征都会引起物体动力学的突出特征。为了预测未知物体的运动序列,将物体的静态图像和机器人电机值输入神经网络以计算PB值。通过将PB值输入闭环RNNPB,可以递归计算物体相对于机器人运动的预测运动。实验是用人形机器人Robovie-IIs将物体推到不同的高度进行的。预测目标物体动力学的实验结果证明,该技术对于预测目标物体的动力学是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号