首页> 外文期刊>Random structures & algorithms >Very rapidly mixing Markov chains for 2 Delta-colorings and for independent sets in a graph with maximum degree 4
【24h】

Very rapidly mixing Markov chains for 2 Delta-colorings and for independent sets in a graph with maximum degree 4

机译:非常快地混合马尔可夫链,用于2个Delta着色和最大度为4的图形中的独立集合

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new technique for analyzing the mixing rate of Markov chains. We use it to prove that the Glauber dynamics on 2 Delta -colorings of a graph with maximum degree Delta mixes in O(n log n) time. We prove the same mixing rate for the Insert/Delete/Drag chain of Dyer and Greenhill (Random, Structures Algorithms 13, 285-317 (1998)) on independent sets of graphs with maximum degree 4. (C) 2001 John Wiley & Sons, Inc. [References: 14]
机译:我们介绍了一种用于分析马尔可夫链混合率的新技术。我们用它来证明在O(n log n)时间内最大度数Delta混合的图的2 Delta-着色的Glauber动力学。我们在最大度数为4的独立图形集上证明了Dyer和Greenhill的Insert / Delete / Drag链的插入率(随机,Structures Algorithms 13,285-317(1998))。(C)2001 John Wiley&Sons ,Inc. [参考:14]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号