首页> 外文期刊>Computers, materials & continua >Incremental Learning Model for Load Forecasting without Training Sample
【24h】

Incremental Learning Model for Load Forecasting without Training Sample

机译:用于无训练示例的负载预测的增量学习模型

获取原文
获取原文并翻译 | 示例

摘要

This article presents hourly load forecasting by using an incremental learning model called Online Sequential Extreme Learning Machine (OS-ELM), which can learn and adapt automatically according to new arrival input. However, the use of OS-ELM requires a sufficient amount of initial training sample data, which makes OS-ELM inoperable if sufficiently accurate sample data cannot be obtained. To solve this problem, a synthesis of the initial training sample is proposed. The synthesis of the initial sample is achieved by taking the first data received at the start of working and adding random noises to that data to create new and sufficient samples. Then the synthesis samples are used to initial train the OS-ELM. This proposed method is compared with Fully Online Extreme Learning Machine (FOS-ELM), which is an incremental learning model that also does not require the initial training samples. Both the proposed method and FOS-ELM are used for hourly load forecasting from the Hourly Energy Consumption dataset. Experiments have shown that the proposed method with a wide range of noise levels, can forecast hourly load more accurately than the FOS-ELM.
机译:本文使用称为在线顺序极限学习机 (OS-ELM) 的增量学习模型来介绍每小时负载预测,该模型可以根据新到达的输入自动学习和调整。但是,使用 OS-ELM 需要足够数量的初始训练样本数据,如果无法获得足够准确的样本数据,则 OS-ELM 无法运行。针对该问题,该文提出对初始训练样本进行综合分析。初始样本的合成是通过获取工作开始时收到的第一个数据并向该数据添加随机噪声以创建新的和足够的样本来实现的。然后使用合成样本对OS-ELM进行初始训练。将该方法与全在线极限学习机(FOS-ELM)进行了比较,后者是一种增量学习模型,也不需要初始训练样本。所提出的方法和FOS-ELM都用于从每小时能耗数据集中预测每小时负荷。实验表明,所提方法在噪声水平范围较广的情况下,能够比FOS-ELM更准确地预测每小时负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号