首页> 外文期刊>Linear Algebra and its Applications >Characterization of Wishart-Laplace distributions via Jordan algebra homomorphisms
【24h】

Characterization of Wishart-Laplace distributions via Jordan algebra homomorphisms

机译:通过约旦代数同态表征Wishart-Laplace分布

获取原文
获取原文并翻译 | 示例

摘要

For a real, Hermitian, or quaternion normal random matrix Y with mean zero, necessary and sufficient conditions for a quadratic form Q(Y) to have a Wishart-Laplace distribution (the distribution of the difference of two independent central Wishart W-rho(m(i), Sigma) random matrices) are given in terms of a certain Jordan algebra homomorphism rho. Further, it is shown that {Q(k)(Y)} is independent Laplace-Wishart if and only if in addition to the aforementioned conditions, the images rho(k)(Sigma(+)) of the Moore-Penrose inverse Sigma(+) of Sigma are mutually orthogonal: rho(k)(Sigma(+))rho(l)(Sigma(+)) = 0 for k not equal l.
机译:对于均值为零的实,厄密或四元数法向随机矩阵Y,二次条件Q(Y)具有Wishart-Laplace分布(两个独立的中心Wishart W-rho( m(i),Sigma)随机矩阵是根据某个Jordan代数同构rho给出的。此外,证明了{Q(k)(Y)}是独立的拉普拉斯-维沙特,当且仅当上述条件之外,摩尔-彭罗斯逆西格玛的图像rho(k)(西格玛(+)) Sigma的(+)相互正交:对于k不等于l的rho(k)(Sigma(+))rho(l)(Sigma(+))= 0。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号