【24h】

A New Crossover Operator in Genetic Programming for Object Classification

机译:用于目标分类的遗传编程中的新交叉算子

获取原文
获取原文并翻译 | 示例

摘要

The crossover operator has been considered “the centre of the storm” in genetic programming (GP). However, many existing GP approaches to object recognition suggest that the standard GP crossover is not sufficiently powerful in producing good child programs due to the totally random choice of the crossover points. To deal with this problem, this paper introduces an approach with a new crossover operator in GP for object recognition, particularly object classification. In this approach, a local hill-climbing search is used in constructing good building blocks, a weight called looseness is introduced to identify the good building blocks in individual programs, and the looseness values are used as heuristics in choosing appropriate crossover points to preserve good building blocks. This approach is examined and compared with the standard crossover operator and the headless chicken crossover (HCC) method on a sequence of object classification problems. The results suggest that this approach outperforms the HCC, the standard crossover, and the standard crossover operator with hill climbing on all of these problems in terms of the classification accuracy. Although this approach spends a bit longer time than the standard crossover operator, it significantly improves the system efficiency over the HCC method.
机译:交叉运营商被认为是基因编程(GP)中的“风暴中心”。然而,许多现有的 GP 对象识别方法表明,由于交叉点的完全随机选择,标准 GP 交叉在生成良好的子程序方面不够强大。为了解决这个问题,本文介绍了一种在GP中使用新的交叉算子进行目标识别的方法,特别是目标分类。在这种方法中,使用局部爬坡搜索来构建良好的构建块,引入称为松散度的权重来识别单个程序中的良好构建块,并将松散度值用作选择适当的交叉点以保留良好构建块的启发式方法。在一系列目标分类问题上,对这种方法进行了检查,并与标准交叉算子和无头鸡交叉(HCC)方法进行了比较。结果表明,在分类精度方面,这种方法在所有这些问题上都优于HCC、标准分频器和标准分频算子。尽管这种方法比标准交叉算子花费的时间要长一些,但它比 HCC 方法显着提高了系统效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号