...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
【24h】

Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.

机译:肘部屈曲运动的控制过程可能与运动学和肌电图模式无关:实验研究和建模。

获取原文
获取原文并翻译 | 示例
           

摘要

Using a non-linear dynamic model based on the lambda version of the equilibrium-point hypothesis, we investigated the shape and duration of the control patterns underlying discrete elbow movements. The model incorporates neural control variables, time-, position- and velocity-dependent intrinsic muscle and reflex properties. Two control variables (R and C) specify a positional frame of reference for activation of flexor and extensor motoneurons. The variable R (reciprocal command) specifies the referent joint angle (R) at which the transition of net flexor to extensor active torque or vice versa can be observed during changes in the actual joint angle elicited by an external force. The variable C (coactivation command) surrounds the transition angle by an angular range in which flexor and extensor muscles may be simultaneously active (if C > 0) or silent (if C < or = 0). An additional, time-dimensional control variable (mu command) influences the dependency of the threshold of the stretch reflex on movement velocity. This control variable is responsible for the reflex damping. Changes in the R command result in shifts in the equilibrium state of the system, a dynamical process leading to electromyographic modifications and movement production. Commands C and mu provide movement stability and effective energy dissipation preventing oscillations at the end of movement. A comparison of empirical and model data was carried out. A monotonic ramp-shaped pattern of the R command can account for the empirical kinematic and electromyographic patterns of the fastest elbow flexion movements made with or without additional inertia, as well as of self-paced movements. The rate of the shifts used in simulation was different for the three types of movements but independent of movement distance (20-80 degrees). This implies that, for a given type of movement, the distance is encoded by the duration of shift in the equilibrium state. The model also reproduces the kinematic and electromyographic patterns of the fastest uncorrected movements opposed in random trials by a high load (80-90% of the maximal) generated by position feedback to a torque motor. The following perturbation effects were simulated: a substantial decrease in the arm displacement (from 60-70 degrees to 5-15 degrees) and movement duration (to about 100 ms) so that these movements ended near the peak velocity of those which were not perturbed; a prolongation of the first agonist electromyographic burst as long as the load was applied; the suppression of the antagonist burst during the dynamic and static phases of movements: the reappearance of the antagonist burst in response to unloading accompanied by a short-latency suppression of agonist activity. These kinematic and electromyographic features of both perturbed and non-perturbed movements were reproduced by using the same control patterns which elicited a monotonic shift in the equilibrium state of the system ending before the peak velocity of non-perturbed movements. Our results suggest that the neuralcontrol processes underlying the fastest unopposed changes in the arm position are completed long before the end of the movement and phasic electromyographic activity. Neither the timing nor the amplitude of electromyographic bursts are planned but rather they represent the long-lasting dynamic response of central, reflex and mechanical components of the system to a monotonic, short-duration shift in the system's equilibrium state.
机译:使用基于平衡点假设的lambda版本的非线性动力学模型,我们研究了离散肘部运动的控制模式的形状和持续时间。该模型结合了神经控制变量,时间,位置和速度相关的固有肌肉和反射特性。两个控制变量(R和C)指定激活屈肌和伸肌神经元的位置参考框架。变量R(往复指令)指定参考关节角度(R),在该参考关节角度(R),在外力引起的实际关节角度变化期间,可以观察到净屈肌向伸肌主动扭矩的转变,反之亦然。变量C(共同激活命令)将过渡角围绕一个角度范围,在该角度范围内,屈肌和伸肌可以同时处于活动状态(如果C> 0)或处于静音状态(如果C <或= 0)。附加的时间维度控制变量(mu命令)会影响拉伸反射阈值对运动速度的依赖性。该控制变量负责反射阻尼。 R命令的变化会导致系统平衡状态的变化,这是导致肌电图修改和运动产生的动力学过程。命令C和mu提供了运动稳定性和有效的能量消散,防止了运动结束时的振荡。比较了经验数据和模型数据。 R命令的单调斜坡形模式可以解释在有或没有附加惯性的情况下,最快的肘部弯曲运动以及自定速度运动的经验运动学和肌电图模式。对于三种类型的运动,模拟中使用的移位率不同,但与运动距离(20-80度)无关。这意味着,对于给定类型的运动,距离由平衡状态下的移动持续时间编码。该模型还再现了随机试验中由于位置反馈到转矩电动机而产生的高负载(最大值的80-90%)所反对的最快的未校正运动的运动学和肌电图。模拟了以下扰动效果:手臂位移(从60-70度降低到5-15度)和运动持续时间(大约100毫秒)显着减少,因此这些运动以接近不受扰动的峰值速度结束;只要施加负载,第一激动剂肌电图爆发的时间延长;在运动的动态和静态阶段抑制拮抗剂的爆发:在卸载后拮抗剂的爆发重新出现,同时又短暂地抑制了激动剂的活性。通过使用相同的控制模式来再现摄动和非摄动运动的这些运动学和肌电图特征,该控制模式引起系统平衡状态的单调移动,该平衡状态在非摄动运动的峰值速度之前结束。我们的研究结果表明,手臂动作最快无障碍变化的神经控制过程在运动和相位肌电活动结束之前很久就完成了。肌电图猝发的定时和幅度都没有计划,而是代表了系统的中央,反射和机械组件对系统平衡状态下单调,短时位移的持久动态响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号