首页> 外文期刊>NeuroImage >Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
【24h】

Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.

机译:MEG神经影像数据的时空贝叶斯推断偶极分析。

获取原文
获取原文并翻译 | 示例

摘要

Recently, we described a Bayesian inference approach to the MEG/EEG inverse problem that used numerical techniques to estimate the full posterior probability distributions of likely solutions upon which all inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999. Bayesian inference applied to the electromagnetic inverse problem. Human Brain Mapping 7, 195; Schmidt, D.M., George, J.S., Ranken, D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.), Biomag 2000: 12th International Conference on Biomagnetism. Espoo, Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at a single point in time employing an extended region source model. They subsequently extended their work to a spatiotemporal Bayesian inference analysis of the full spatiotemporal MEG/EEG data set. Here, we formulate spatiotemporal Bayesian inference analysis using a multi-dipole model of neural activity. This approach is faster than the extended region model, does not require use of the subject's anatomical information, does not require prior determination of the number of dipoles, and yields quantitative probabilistic inferences. In addition, we have incorporated the ability to handle much more complex and realistic estimates of the background noise, which may be represented as a sum of Kronecker products of temporal and spatial noise covariance components. This reduces the effects of undermodeling noise. In order to reduce the rigidity of the multi-dipole formulation which commonly causes problems due to multiple local minima, we treat the given covariance of the background as uncertain and marginalize over it in the analysis. Markov Chain Monte Carlo (MCMC) was used to sample the many possible likely solutions. The spatiotemporal Bayesian dipole analysis is demonstrated using simulated and empirical whole-head MEG data.
机译:最近,我们描述了一种针对MEG / EEG反问题的贝叶斯推理方法,该方法使用数值技术来估计所有推理所基于的可能解的后验概率分布[Schmidt,DM,George,JS,Wood,CC,1999。贝叶斯推理适用于电磁逆问题。 Human Brain Mapping 7,195; Schmidt,D.M.,George,J.S.,Ranken,D.M.,Wood,C.C.,2001年。MEG/ EEG的时空贝叶斯推断。在:内农宁,J。Ilmoniemi,R。J.,卡蒂拉,T。(编辑),《生物杂志》 2000年:第12届国际生物磁性会议。挪威埃斯波,第9页。 671]。 Schmidt等。 (1999)集中在使用扩展区域源模型在单个时间点的数据分析。随后,他们将工作扩展到整个时空MEG / EEG数据集的时空贝叶斯推断分析。在这里,我们使用神经活动的多偶极模型来制定时空贝叶斯推断分析。这种方法比扩展区域模型更快,不需要使用受试者的解剖信息,不需要事先确定偶极子的数量,并且可以得出定量的概率推论。此外,我们还整合了处理背景噪声的更为复杂和现实的估计的功能,该估计可以表示为时间和空间噪声协方差分量的Kronecker乘积之和。这样可以减少噪声过低的影响。为了降低通常由多个局部极小值引起问题的多偶极子公式的刚度,我们将背景的给定协方差视为不确定,并在分析中将其边缘化。马尔可夫链蒙特卡洛(MCMC)用于对许多可能的解决方案进行采样。使用模拟和经验的全头MEG数据证明了时空贝叶斯偶极分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号