首页> 外文期刊>NeuroImage >Skull-stripping magnetic resonance brain images using a model-based level set.
【24h】

Skull-stripping magnetic resonance brain images using a model-based level set.

机译:使用基于模型的水平集进行颅骨剥离磁共振脑图像。

获取原文
获取原文并翻译 | 示例

摘要

The segmentation of brain tissue from nonbrain tissue in magnetic resonance (MR) images, commonly referred to as skull stripping, is an important image processing step in many neuroimage studies. A new mathematical algorithm, a model-based level set (MLS), was developed for controlling the evolution of the zero level curve that is implicitly embedded in the level set function. The evolution of the curve was controlled using two terms in the level set equation, whose values represented the forces that determined the speed of the evolving curve. The first force was derived from the mean curvature of the curve, and the second was designed to model the intensity characteristics of the cortex in MR images. The combination of these forces in a level set framework pushed or pulled the curve toward the brain surface. Quantitative evaluation of the MLS algorithm was performed by comparing the results of the MLS algorithm to those obtained using expert segmentation in 29 sets of pediatric brain MR images and 20 sets of young adult MR images. Another 48 sets of elderly adult MR images were used for qualitatively evaluating the algorithm. The MLS algorithm was also compared to two existing methods, the brain extraction tool (BET) and the brain surface extractor (BSE), using the data from the Internet brain segmentation repository (IBSR). The MLS algorithm provides robust skull-stripping results, making it a promising tool for use in large, multi-institutional, population-based neuroimaging studies.
机译:在磁共振(MR)图像中脑组织从非脑组织的分割(通常称为颅骨剥离)是许多神经图像研究中重要的图像处理步骤。开发了一种新的数学算法,即基于模型的水平集(MLS),用于控制隐含在水平集函数中的零水平曲线的演化。在水平集方程中使用两个项来控制曲线的演变,该两项的值表示确定演化曲线速度的力。第一个力来自曲线的平均曲率,第二个力设计用于模拟MR图像中皮层的强度特征。在水平集框架中这些力的组合将曲线推向或拉向大脑表面。通过将MLS算法的结果与使用专家分割获得的结果进行比较,对MLS算法进行定量评估,这些结果来自29组小儿脑MR图像和20组年轻成人MR图像。另使用48组老年人MR图像定性评估算法。使用来自Internet大脑分割存储库(IBSR)的数据,还将MLS算法与两种现有方法(脑提取工具(BET)和脑表面提取器(BSE))进行了比较。 MLS算法提供了可靠的颅骨剥离结果,使其成为用于大型,多机构,基于人群的神经成像研究的有前途的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号