首页> 外文期刊>Nanobiotechnology: the journal at the intersection of nanotechnology, molecular biology, and biomedical sciences >Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis
【24h】

Superhydrophobic properties of nanostructured-microstructured porous silicon for improved surface-based bioanalysis

机译:纳米结构微结构多孔硅的超疏水特性,用于改进基于表面的生物分析

获取原文
获取原文并翻译 | 示例
           

摘要

Wettability is a fundamental property of a solid surface, which plays important roles in many industrial applications. The possibility to create well-controlled nonwetting states on silicon surfaces without photolithography-based processing can bring many advantages in the biotechnology and microfluidics areas. In this paper, superhydrophobic properties of macroporous-nanoporous structured silicon are reported. The superhydrophobic porous silicon layers are prepared by electrochemical etching of bulk crystalline silicon wafers. Altered anodization conditions provide surfaces with varying pore morphologies, yielding different wetting properties, ranging from highly wetting (nanoporous morphologies) to water-repellent surfaces (macroporous morphologies). Subsequent surface modification with a fluorocarbon coupling agent can further improve nonwetting properties and stabilize the surface for a long term. Contact angles as high as 176°were achieved on macroporous silicon and superhydrophobicity was maintained for several months without degradation. The porous surfaces have proven to be a very attractive substrate for protein microarrays. Fluorescence-based assay of immunoglobulin G in plasma is reported with a limit of detection of 1 pM, a spot size of 50 μm, and an array density of 15,625 spots per square centimeter. Macroporous surfaces have also been developed for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications, where the intrinsic hydrophobic surface properties confine the deposited sample to MALDI spots of less than 200 μm with well-defined MALDI crystals, providing a high-sensitivity readout. Furthermore, a superhydrophobic MALDI-TOF MS target anchor chip composed of nonporous anchor points surrounded by superhydrophobic porous areas for sample deposition and on anchor point confinement is reported. Such anchor chips allowed localized crystallization of large sample volumes (5 μL) improving the hydrophobic spot confinement strategy in terms of final MALDI crystal localization and readout sensitivity.
机译:润湿性是固体表面的基本属性,在许多工业应用中起着重要作用。无需基于光刻的处理就可以在硅表面上创建良好控制的非润湿状态的可能性可以在生物技术和微流体领域带来许多优势。本文报道了大孔-纳米结构硅的超疏水性能。超疏水多孔硅层是通过对体晶硅晶片进行电化学蚀刻而制备的。改变的阳极氧化条件使表面具有不同的孔形貌,产生不同的润湿特性,范围从高度润湿(纳米孔形貌)到疏水表面(大孔形貌)。随后用碳氟化合物偶联剂进行的表面改性可以进一步改善非润湿性并长期稳定表面。在大孔硅上获得了高达176°的接触角,并且超疏水性可以维持数月而不会降解。多孔表面已被证明是蛋白质微阵列非常有吸引力的基质。据报道,血浆中免疫球蛋白G的基于荧光的检测限为1 pM,斑点大小为50μm,阵列密度为每平方厘米15,625个斑点。还开发了大孔表面用于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)应用,其中固有的疏水性表面性质将沉积的样品限制在小于200μm的MALDI点上,并且定义明确MALDI晶体,提供高灵敏度读数。此外,还报道了一种超疏水的MALDI-TOF MS目标锚定芯片,该芯片由无孔锚定点组成,周围环绕着超疏水性多孔区域,用于样品沉积和锚定点限制。这样的锚定芯片允许大样本量(5μL)的局部结晶,从而在最终MALDI晶体定位和读出灵敏度方面改善了疏水点限制策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号