...
首页> 外文期刊>Nanotechnology >Bias-dependent conductive characteristics of individual GeSi quantum dots studied by conductive atomic force microscopy
【24h】

Bias-dependent conductive characteristics of individual GeSi quantum dots studied by conductive atomic force microscopy

机译:导电原子力显微镜研究单个GeSi量子点的偏压依赖性导电特性

获取原文
获取原文并翻译 | 示例

摘要

The bias-dependent electrical characteristics of individual self-assembled GeSi quantum dots (QDs) are investigated by conductive atomic force microscopy. The results reveal that the conductive characteristics of QDs are strongly influenced by the applied bias. At low (-0.5 to -2.0 V) and high (-2.5 to -4.0 V) biases, the current distributions of individual GeSi QDs exhibit ring-like and disc-like characteristics respectively. The current of the QD's central part increases more quickly than that of the other parts as the bias magnitude increases. Histograms of the magnitude of the current on a number of QDs exhibit the same single-peak feature at low biases, and double- or three-peak features at high biases, where additional peaks appear at large-current locations. On the other hand, histograms of the magnitude of the current on the wetting layers exhibit the same single-peak feature for all biases. This indicates the conductive mechanism is significantly different for QDs and wetting layers. While the small-current peak of QDs can be attributed to the Fowler-Nordheim tunneling model at low biases and the Schottky emission model at high biases respectively, the large-current peak(s) may be attributed to the discrete energy levels of QDs. The results suggest the conductive mechanisms of GeSi QDs can be regulated by the applied bias.
机译:通过导电原子力显微镜研究了各个自组装GeSi量子点(QD)与偏压有关的电学特性。结果表明,QD的导电特性受到施加偏压的强烈影响。在低(-0.5至-2.0 V)和高(-2.5至-4.0 V)偏压下,单个GeSi QD的电流分布分别呈现出环状和盘状特性。随着偏置幅度的增加,QD中心部分的电流比其他部分的增加更快。多个QD上电流大小的直方图在低偏置时显示相同的单峰特征,在高偏置时显示双峰或三峰特征,其中大电流位置出现额外的峰值。另一方面,对于所有偏置,润湿层上电流大小的直方图显示相同的单峰特征。这表明对于QD和润湿层而言,导电机理存在显着差异。虽然QD的小电流峰值可以分别归因于低偏压下的Fowler-Nordheim隧穿模型和高偏压下的肖特基发射模型,但大电流峰可以归因于QD的离散能级。结果表明,GeSi量子点的导电机制可以通过施加偏压来调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号