首页> 外文学位 >Conductive atomic force microscopy study of single semiconductor quantum dots and quantum dot aggregates.
【24h】

Conductive atomic force microscopy study of single semiconductor quantum dots and quantum dot aggregates.

机译:单个半导体量子点和量子点聚集体的导电原子力显微镜研究。

获取原文
获取原文并翻译 | 示例

摘要

The design, synthesis and characterization of nanoparticles are being actively studied in the last few decades since the size of features in modern technological devices become increasingly smaller. Semiconductor nanoparticles, often referred as "quantum dots" are playing an increasingly important role in material design and device fabrication. The electronic properties of the quantum dots aroused great interest for the last two decades. It has been proved that quantum dots have very different opti-electronic properties from the macroscopic semiconductors. Optical and electrical spectroscopies have been used to study the electronic properties of quantum dots but they all have their limitations. For example, they can only study ensemble properties and some of the transitions in optical spectroscopy are forbidden due to selection rules.;In this thesis, we provide a new way of using conductive atomic force microscopy to investigate the electronic properties of the quantum dots. In chapter 1, we give a brief introduction on semiconductors and quantum dots and review some theories used to describe the electronic properties and density of states in both bulk semiconductors and semiconductor nanocrystals. A description of scanning tunneling microscopy is introduced followed by a detailed discussion of how it can be used to study the quantum dots. Some basic theories are introduced and we will show some simulation results.;In chapter 3, we studied the size-dependent tunneling spectra of InSb quantum dots. We discovered significant difference in the local density of state between InSb and InAs quantum dots and the tunneling through L-point states in InSb quantum dots is discussed in detail with both experimental evidences and theoretical results. In chapter 4, we further discussed the quantum coupling effect between the InSb quantum dots. Chapter 5 is a detailed discussion of PbSe quantum dots, which is a shell-tunneling regime that is very different from the tunneling condition of InSb quantum dots.;With the knowledge of how to use tunneling microscopy to study the electronic properties of semiconductor nanoparticles, we have a new and powerful weapon dealing with these new materials. Understanding the electronic properties will help us greatly in designing and assembling new materials with new, controllable properties for use in electronic, optoelectronic, thermoelectric and photovoltaic applications.
机译:由于现代技术设备中的特征尺寸越来越小,近几十年来正在积极研究纳米颗粒的设计,合成和表征。半导体纳米粒子(通常称为“量子点”)在材料设计和器件制造中起着越来越重要的作用。在过去的二十年中,量子点的电子特性引起了人们的极大兴趣。已经证明,量子点具有与宏观半导体非常不同的光电子性质。光学和电子光谱学已被用于研究量子点的电子性质,但是它们都有其局限性。例如,他们只能研究整体性质,并且由于选择规则,光学光谱学中的某些跃迁是被禁止的。本文为使用导电原子力显微镜研究量子点的电子性质提供了一种新方法。在第1章中,我们简要介绍了半导体和量子点,并回顾了一些用于描述体半导体和半导体纳米晶体中电子性质和态密度的理论。介绍扫描隧道显微镜的描述,然后详细讨论如何使用它来研究量子点。介绍了一些基本理论,并给出了一些仿真结果。在第三章中,我们研究了InSb量子点的尺寸依赖性隧穿光谱。我们发现InSb和InAs量子点之间的局部态密度存在显着差异,并通过实验证据和理论结果详细讨论了InSb量子点中穿过L点态的隧穿。在第4章中,我们进一步讨论了InSb量子点之间的量子耦合效应。第5章详细讨论了PbSe量子点,它是一种与InSb量子点的隧穿条件大不相同的壳隧道技术;在了解如何使用隧道显微镜研究半导体纳米粒子的电子特性后,我们拥有处理这些新材料的强大新武器。了解电子特性将极大地帮助我们设计和组装具有可控新特性的新材料,用于电子,光电,热电和光伏应用。

著录项

  • 作者

    Wang, Tuo.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号