...
首页> 外文期刊>Nanotechnology >The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis
【24h】

The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis

机译:尺寸分析法测定原子力显微镜悬臂弹簧常数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many papers have been published on methods to determine the normal spring constant, kz, of atomic force microscope (AFM) cantilevers. This is necessary to calibrate force measurements in the AFM, which then lead to a wide variety of applications from measuring the rupture force of protein bonds to determining the Young's modulus of materials such as polymers at surfaces. Manufacturers' nominal values of kz have been found to be up a factor of two in error, therefore practical methods to calibrate kz are required. There are three main categories of methods, with some overlap, which we call: (1) dimensional, (2) static experimental and (3) dynamic experimental. Here, we consider the dimensional aspects of these methods involving the cantilever material properties and geometry. We do this via reviewing the analytical equations of seven publications and comparing them with finite element analysis (FEA) calculations. It is shown that the best analytical equations are those of Neumeister and Ducker but that these need a revision for the bending of the triangular portion of the V-shaped cantilever. This is done and the correlation with FEA is then excellent. Equations are also provided for the effect of a metallized layer and the imaging tip not being at the cantilever apex; these also agree with FEA. We evaluate the relevant uncertainties and provide recommendations as to the best equations to use together with relevant correction parameters based on the assumption that the FEA calculations are valid. We test this assumption elsewhere.
机译:关于确定原子力显微镜(AFM)悬臂的正常弹簧常数kz的方法的许多论文已经发表。这对于校准AFM中的力测量是必要的,然后导致从测量蛋白质键的断裂力到确定材料(例如表面聚合物)的杨氏模量的广泛应用。已经发现制造商的kz标称值误差高达两倍,因此需要校准kz的实用方法。方法主要分为三类,有部分重叠:(1)尺寸,(2)静态实验和(3)动态实验。在这里,我们考虑涉及悬臂材料特性和几何形状的这些方法的尺寸方面。为此,我们回顾了七种出版物的解析方程,并将它们与有限元分析(FEA)计算进行了比较。结果表明,最好的分析方程式是Neumeister和Ducker的方程式,但这些方程式需要修正才能使V型悬臂的三角形部分弯曲。这样就完成了,与FEA的相关性非常好。还提供了有关金属化层和成像头不在悬臂顶点的影响的方程式;这些也与FEA一致。我们基于FEA计算有效的假设,评估了相关的不确定性,并提供了有关最佳方程式以及相关校正参数的建议。我们在其他地方测试这个假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号