首页> 外文期刊>Kybernetes: The International Journal of Systems & Cybernetics >Statistical versus optimal partitioning for block entropies
【24h】

Statistical versus optimal partitioning for block entropies

机译:块熵的统计划分与最佳划分

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Given a time-series, what is the best partitioning of the state space in order to obtain reasonable values for the block entropies? The purpose of this paper is to provide a simple answer (an algorithm), although approximative, in connection with symbolic dynamics and statistical properties of 1-d maps on the interval. Design/methodology/approach - The logistic map is examined as an archetype of a Complex System with different behaviors, namely: periodicity, order-to-chaos period-doubling transition, weak chaos, parametric intermittent chaos, developed chaos and fully developed chaos. For the logistic map the generating partition is known, and allows comparison with other prescriptions in the literature. The partitioning of the phase space with the easy generated bipartition induced by the mean value of a curve in the plane, gives results in good agreement (roughly up to a 20 per cent difference) with the results of the generating partition, if the trajectory of the system is in parametric intermittent chaos and in developed chaos (DC). In the case of fully developed chaos (FDC), the agreement is perfect. Findings - The authors confirm that a statistical partitioning is almost equivalent with the exact partitioning for the logistic map. Originality/value - The paper updates previous results and proposes a better understanding on the partitioning for symbolic dynamics.
机译:目的-给定一个时间序列,为了获得块熵的合理值,状态空间的最佳划分是什么?本文的目的是提供一个简单的答案(一种算法),尽管是近似的,但它与区间上一维映射的符号动力学和统计特性有关。设计/方法/方法-将后勤图作为具有不同行为的复杂系统的原型进行检查,这些行为包括:周期性,从阶到混沌的周期加倍过渡,弱混沌,参数间歇性混沌,发达的混沌和完全发达的混沌。对于后勤图,生成分区是已知的,并且可以与文献中的其他处方进行比较。相空间的划分由平面中曲线的平均值引起的易于生成的二分法,如果生成轨迹的轨迹与生成的划分结果相吻合(大约相差20%)。该系统处于参数间歇性混沌和发达混沌(DC)中。对于完全发展的混乱局面(FDC),该协议是完美的。调查结果-作者确认统计分区几乎等同于逻辑地图的精确分区。原创性/价值-本文更新了以前的结果,并提出了对符号动力学分区的更好理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号