首页> 外文期刊>Molecular cancer therapeutics >Triptolide Induces Cell Killing in Multidrug-Resistant Tumor Cells via CDK7/RPB1 Rather than XPB or p44
【24h】

Triptolide Induces Cell Killing in Multidrug-Resistant Tumor Cells via CDK7/RPB1 Rather than XPB or p44

机译:雷公藤甲素通过CDK7 / RPB1而非XPB或p44诱导多药耐药肿瘤细胞杀伤

获取原文
获取原文并翻译 | 示例
           

摘要

Multidrug resistance (MDR) is a major cause of tumor treatment failure; therefore, drugs that can avoid this outcome are urgently needed. We studied triptolide, which directly kills MDR tumor cells with a high potency and a broad spectrum of cell death. Triptolide did not inhibit P-glycoprotein (P-gp) drug efflux and reduced P-gp and MDR1 mRNA resulting from transcription inhibition. Transcription factors including c-MYC, SOX-2, OCT-4, and NANOG were not correlated with triptolide-induced cell killing, but RPB1, the largest subunit of RNA polymerase II, was critical in mediating triptolide's inhibition of MDR cells. Triptolide elicited antitumor and anti-MDR activity through a universal mechanism: by activating CDK7 by phosphorylating Thr170 in both parental and MDR cell lines and in SK-OV-3 cells. The CDK7-selective inhibitor BS-181 partially rescued cell killing induced by 72-hour treatment of triptolide, which may be due to partial rescue of RPB1 degradation. We suggest that a precise phosphorylation site on RPB1 (Ser1878) was phosphorylated by CDK7 in response to triptolide. In addition, XPB and p44, two transcription factor TFIIH subunits, did not contribute to tripto-lide-driven RPB1 degradation and cell killing, although XPB was reported to covalently bind to triptolide. Several clinical trials are underway to test triptolide and its analogues for treating cancer and other diseases, so our data may help expand potential clinical uses of triptolide, as well as offer a compound that overcomes tumor MDR. Future investigations into the primary molecular target(s) of triptolide responsible for RPB1 degradation may suggest novel anti-MDR target(s) for therapeutic development. (C) 2016 AACR.
机译:多药耐药性(MDR)是导致肿瘤治疗失败的主要原因;因此,迫切需要能够避免这种结果的药物。我们研究了雷公藤甲素,它能高效杀伤MDR肿瘤细胞并具有广泛的细胞死亡谱。雷公藤内酯醇不抑制P-糖蛋白(P-gp)药物外流,并且由于转录抑制而导致P-gp和MDR1 mRNA降低。转录因子,包括c-MYC,SOX-2,OCT-4和NANOG与雷公藤内酯醇诱导的细胞杀伤无关,但是RPB1是RNA聚合酶II的最大亚基,在介导雷公藤内酯醇对MDR细胞的抑制中起关键作用。雷公藤内酯醇通过普遍机制引发抗肿瘤和抗MDR活性:通过亲本和MDR细胞系以及SK-OV-3细胞中的Thr170磷酸化激活CDK7。 CDK7-选择性抑制剂BS-181部分挽救了雷公藤甲素72小时处理诱导的细胞杀伤,这可能是由于RPB1降解的部分挽救。我们建议,RPB1(Ser1878)上的精确磷酸化位点被CDK7响应雷公藤甲素的作用而被磷酸化。另外,尽管据报道XPB与雷公藤内酯共价结合,但XPB和p44这两个转录因子TFIIH亚基,并没有促进雷公藤内酯驱动的RPB1降解和细胞杀伤。目前正在进行一些临床试验来测试雷公藤甲素及其类似物用于治疗癌症和其他疾病,因此我们的数据可能有助于扩大雷公藤内酯的潜在临床用途,并提供克服肿瘤MDR的化合物。未来对雷公藤甲素负责RPB1降解的主要分子靶标的研究可能会建议用于治疗开发的新型抗MDR靶标。 (C)2016 AACR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号