【24h】

Apoptotic repair of genotoxic tissue damage and the role of p53 gene.

机译:凋亡修复对遗传毒性组织的损伤和p53基因的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The spontaneous mutation rate per replication per genome is nearly invariant in microbes; however, the rate of spontaneous genomic mutations in higher eukaryotes is much higher. Furthermore, the mutation rates per locus per generation among Drosophila, mice and humans are similar, despite the large differences in generation time. A simple explanation for these findings is that mice and humans have a specific antimutagenic mechanism that is lacking in Drosophila. I propose that apoptotic repair-deletion of genotoxic damage-bearing cells-operates in mammalian germ cells and that it works more accurately in humans than in mice because of a slower rate of cell turnover and a longer generation time. It has been a long-standing puzzle that germline mutation frequencies decrease markedly as the dose-rate of radiation is lowered in mice but not in Drosophila. This can be readily explained by p53-dependent apoptotic repair, because the p53 gene is absent from the genome of Drosophila. Fetuses of p53+/+ mice have proficient apoptotic repair capacity for X-ray-induced teratogenic damage, but p53-null fetuses completely lack this capacity. Further, I propose that the primary role of the p53 gene is to guard germ cells and embryos from genotoxic damage. This implies that the tumour suppressor function of the p53 gene results from p53-dependent apoptotic deletion of cells with genotoxic damage. The reasoning behind this proposal is given by reviewing reports that Drosophila larvae are insensitive to tumour formation after irradiation. Finally, I discuss the genetic effects of radiation in humans. Copyright 1998 Elsevier Science B.V. All rights reserved.
机译:每个基因组每个复制的自发突变率在微生物中几乎是不变的。然而,高等真核生物的自发基因组突变率要高得多。此外,果蝇,小鼠和人类之间,每代每个基因座的突变率相似,尽管世代时间差异很大。这些发现的简单解释是,小鼠和人类具有果蝇所缺乏的特定抗突变机制。我提出,在哺乳动物生殖细胞中进行具有遗传毒性损害的细胞的凋亡修复修复,并且由于细胞更新速度较慢且生成时间较长,因此它在人类中的作用比在小鼠中更为精确。长期存在的难题是,随着小鼠辐射剂量率的降低,果蝇的种系突变频率会显着降低,而果蝇却没有。这可以通过依赖p53的细胞凋亡修复轻松解释,因为果蝇基因组中不存在p53基因。 p53 + / +小鼠的胎儿对X射线引起的致畸性损伤具有良好的凋亡修复能力,但p53无效的胎儿则完全没有这种能力。此外,我提出p53基因的主要作用是保护生殖细胞和胚胎免受遗传毒性损害。这暗示p53基因的肿瘤抑制功能是由具有遗传毒性损伤的细胞的p53依赖性凋亡缺失引起的。该建议背后的理由是通过回顾有关果蝇幼虫对辐射后肿瘤形成不敏感的报道而给出的。最后,我讨论了辐射对人类的遗传影响。版权所有1998 Elsevier Science B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号