首页> 外文期刊>Metabolic engineering >Elucidating acetate tolerance in E. coli using a genome-wide approach.
【24h】

Elucidating acetate tolerance in E. coli using a genome-wide approach.

机译:使用全基因组方法阐明大肠杆菌中的乙酸盐耐受性。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Engineering organisms for improved performance using lignocellulose feedstocks is an important step towards a sustainable fuel and chemical industry. Cellulosic feedstocks contain carbon and energy in the form of cellulosic and hemicellulosic sugars that are not metabolized by most industrial microorganisms. Pretreatment processes that hydrolyze these polysaccharides often also result in the accumulation of growth inhibitory compounds, such as acetate and furfural among others. Here, we have applied a recently reported strategy for engineering tolerance towards the goal of increasing Escherichia coli growth in the presence of elevated acetate concentrations (Lynch et al., 2007). We performed growth selections upon an E. coli genome library developed using a moderate selection pressure to identify genomic regions implicated in acetate toxicity and tolerance. These studies identified a range of high-fitness genes that are normally involved in membrane and extracellular processes, are key regulated steps in pathways, and are involved in pathways that yield specific amino acids and nucleotides. Supplementation of the products and metabolically related metabolites of these pathways significantly increased growth rate (a 130% increase in specific growth) at inhibitory acetate concentrations. Our results suggest that acetate tolerance will not involve engineering of a single pathway; rather we observe a range of potential mechanisms for overcoming acetate based inhibition.
机译:利用木质纤维素原料改造生物以改善性能的过程是朝着可持续的燃料和化学工业迈出的重要一步。纤维素原料含有纤维素和半纤维素糖形式的碳和能量,大多数工业微生物无法代谢这些碳和能量。水解这些多糖的预处理过程通常还会导致生长抑制性化合物(例如乙酸盐和糠醛)的积累。在这里,我们采用了最近报道的工程耐受性策略,以实现在乙酸盐浓度升高的情况下增加大肠杆菌生长的目标(Lynch等,2007)。我们对使用中等选择压力开发的大肠杆菌基因组文库进行了生长选择,以鉴定与乙酸盐毒性和耐受性有关的基因组区域。这些研究确定了一系列高适应性基因,这些基因通常参与膜和细胞外过程,是途径中的关键调控步骤,并参与产生特定氨基酸和核苷酸的途径。在抑制性乙酸盐浓度下,这些途径的产品和代谢相关代谢产物的补充显着增加了生长速率(比生长增加了130%)。我们的结果表明,醋酸盐耐受性将不涉及单一途径的工程。相反,我们观察到了一系列克服醋酸盐抑制的潜在机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号