...
首页> 外文期刊>Metabolic engineering >Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae
【24h】

Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae

机译:细菌乙酰辅酶A合成途径的引入提高了酿酒酵母中乳酸的产生

获取原文
获取原文并翻译 | 示例

摘要

Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3 phosphate dehydrogenasel (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylasel (PDC1) and alcohol dehydrogenasel (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Aadhl cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coliderived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L-1 h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. (C) 2016 International Metabolic Engineering Society. Published by Elsevier Inc.
机译:耐酸啤酒酵母经过工程改造,可通过表达异源乳酸脱氢酶(LDH)基因来产生乳酸,同时减弱一些关键途径基因,包括甘油3磷酸脱氢酶(GPD1)和细胞色素c氧化还原酶2(CYB2)。为了进一步提高乳酸的产率,通过破坏丙酮酸脱羧酶(PDC1)和醇脱氢酶(ADH1)基因来减弱乙醇的生产途径。尽管乳酸产量增加,但是由于缺乏ADH1而导致生长速率和葡萄糖消耗速率的严重降低导致总体生产率的显着降低。在Aadhl细胞中,乙酰-CoA(生物可应用成分的关键前体)的水平可能不足以正常细胞生长。为了增加乙酰辅酶A的细胞供应,我们将细菌乙酰化乙醛脱氢酶(A-ALD)酶(EC 1.2.1.10)基因引入了产乳酸的酿酒酵母中。表达了大肠杆菌衍生的A-ALD基因mhpF和eutE,并有效地补充了酵母中的乙醛脱氢酶(ALD)/乙酰辅酶A合成酶(ACS)途径。具有异源乙酰辅酶A合成途径的工程菌株显示出增加的葡萄糖消耗速率和更高的乳酸发酵生产率。在生物反应器中分批补料发酵下,乳酸的产量达到142 g / L,产量为0.89 g / g,生产率为3.55 g L-1 h(-1)。这项研究表明了一种新方法,可通过酵母中乙酰辅酶A生物合成途径的代谢工程来提高乳酸的生产率。 (C)2016国际代谢工程学会。由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号