...
首页> 外文期刊>Metabolic engineering >Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli
【24h】

Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli

机译:使用工程化大肠杆菌从半纤维素水解物中高效生产木糖醇

获取原文
获取原文并翻译 | 示例
           

摘要

A metabolically engineered Escherichia coli has been constructed for the production of xylitol. one of the top 12 platform chemicals from agricultural sources identified by the US Department of Energy. An optimal plasmid was constructed to express xylose reductase from Neurospora crassa with almost 110 inclusion bodies at relatively high temperature. The phosphoenolpyruvate-dependent glucose phosphotransferase system (ptsG) was disrupted to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose. The native pathway for D-xylose catabolism in E coli W3110 was blocked by deleting the xylose isomerase (xylA) and xylulose kinase (xylB) genes. The putative pathway for xylitol phosphorylation was also blocked by disrupting the phosphoenolpyruvate-dependent fructose phosphotransferase system (ptsF). The xylitol producing recombinant E. colt allowed production of 1724 g L-1 xylitol after 110 h of fed-batch cultivation with an average productivity of 1.57 g L-1 h(-1). The molar yield of xylitol to glucose reached approximately 2.2 (mol xylitol mol(-1) glucose). Furthermore, the recombinant strain also produced about 150 g L-1 xylitol from hemicellulosic sugars in modified M9 minimal medium and the overall productivity was 1.40 g L-1 h(-1), representing the highest xylitol concentration and productivity reported to date from hemicellulosic sugars using bacteria. Thus, this engineered E. coli is a candidate for the development of efficient industrial-scale production of xylitol from hemicellulosic hydrolysate. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
机译:已经构建了代谢工程化的大肠杆菌用于生产木糖醇。是美国能源部确定的来自农业的12种主要平台化学品之一。构建了一个最佳质粒,以在较高温度下表达近110个包涵体的神经孢霉的木糖还原酶。磷酸烯醇丙酮酸依赖性葡萄糖磷酸转移酶系统(ptsG)被破坏以消除分解代谢物阻遏并允许同时摄取葡萄糖和木糖。通过删除木糖异构酶(xylA)和木酮糖激酶(xylB)基因,阻断了大肠杆菌W3110中D-木糖分解代谢的天然途径。通过破坏依赖磷酸烯醇丙酮酸的果糖磷酸转移酶系统(ptsF),木糖醇磷酸化的假定途径也被阻断。生产木糖醇的重组大肠杆菌马驹在分批补料培养110小时后可生产1724 g L-1木糖醇,平均生产率为1.57 g L-1 h(-1)。木糖醇对葡萄糖的摩尔产率达到约2.2(mol木糖醇mol(-1)葡萄糖)。此外,重组菌株还在改良的M9基本培养基中从半纤维素糖中产生了约150 g L-1木糖醇,总生产率为1.40 g L-1 h(-1),代表了迄今为止报道的半纤维素中最高的木糖醇浓度和生产率。使用细菌的糖。因此,这种工程化的大肠杆菌是从半纤维素水解物中高效工业规模生产木糖醇的候选产品。 (C)2015年国际代谢工程学会。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号