首页> 外文学位 >Improving the efficiency of nadph-dependent xylitol production in engineered escherichia coli.
【24h】

Improving the efficiency of nadph-dependent xylitol production in engineered escherichia coli.

机译:提高工程化大肠杆菌中纳德夫依赖性木糖醇生产的效率。

获取原文
获取原文并翻译 | 示例

摘要

The development of cost-effective and sustainable microbial processes for the production of chemicals and high-energy fuels is crucial to reducing current dependence on petroleum. Nature has provided a vast collection of biological systems that can be redesigned to efficiently convert readily available, inexpensive, biomass-derived sugars to these high-value products. In this study we describe various metabolic engineering strategies aimed towards developing the E. coli bacterium as a microbial host for heterologous, nicotinamide cofactor (NADH and NADPH)-dependent transformations. These transformations are of major importance because they are applicable in the synthesis of a variety of important chemicals. NADPH-dependent xylitol production from glucose/xylose mixtures serves as the experimental platform and is used to illustrate the important aspects of this work. The experimental system is designed such that glucose oxidation serves as the source of electrons for xylose reduction to xylitol. Previous assessments of the metabolic behavior of this system under aerobic conditions showed that xylose conversion to xylitol was less than 100% due to production of xylulose as a by-product. It was also shown that cofactors were not efficiently diverted towards xylitol production and this resulted in suboptimal yields (defined as mol of xylitol produced/ glucose consumed and denoted as YRPG) under these conditions. Therefore in this study genetic modifications and process conditions aimed at improving xylose conversion to xylitol, the efficiency of the biotransformation (defined as experimental YRPG /theoretical YRPG) and the productivity of the engineered system are investigated. We focus on parameters such as competing pathways, transhydrogenase activity and level of aeration, as these are key factors expected to impact cofactor availability for the desired biotransformations. We find that efficiency of the biotransformation is maximal under non-respiratory conditions possibly due to the elimination of respiration as a sink of reduced cofactors.
机译:开发用于生产化学品和高能燃料的经济有效且可持续的微生物工艺对减少当前对石油的依赖至关重要。大自然提供了大量的生物系统,可以对其进行重新设计,以将现成的,廉价的,生物质衍生的糖有效地转化为这些高价值产品。在这项研究中,我们描述了各种旨在将大肠杆菌作为异源烟酰胺辅因子(NADH和NADPH)依赖性转化的微生物宿主发展的代谢工程策略。这些转化非常重要,因为它们适用于多种重要化学物质的合成。由葡萄糖/木糖混合物产生的NADPH依赖性木糖醇可作为实验平台,用于说明这项工作的重要方面。设计该实验系统,使得葡萄糖氧化充当将木糖还原为木糖醇的电子源。先前对该系统在有氧条件下的代谢行为的评估表明,由于副产物木酮糖的产生,木糖向木糖醇的转化率小于100%。还表明,在这些条件下,辅因子不能有效地转移到木糖醇生产上,这导致次优的产量(定义为木糖醇生产的摩尔/消耗的葡萄糖,表示为YRPG)。因此,在这项研究中,旨在改善木糖向木糖醇转化的遗传修饰和工艺条件,研究了生物转化的效率(定义为实验YRPG /理论YRPG)和工程系统的生产率。我们专注于诸如竞争途径,转氢酶活性和通气水平等参数,因为这些是预期影响辅因子可用于所需生物转化的关键因素。我们发现,在非呼吸条件下,生物转化的效率最高,这可能是由于消除了作为减少的辅因子汇的呼吸。

著录项

  • 作者

    Akinterinwa, Olubolaji.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Chemical.;Biology Cell.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 256 p.
  • 总页数 256
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号