首页> 外文期刊>Nano Energy >A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries
【24h】

A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries

机译:一种高性能、可溶液加工的聚合物/陶瓷/离子液体电解质,用于室温固态锂金属电池

获取原文
获取原文并翻译 | 示例

摘要

All-solid-state electrolytes provide a guarantee for the safe running of Li metal batteries (LMBs) with high energy density. Nevertheless, the low ionic conductivity and huge interfacial impedance between lithium anodes and electrolytes are the critical issues baffling their rapid development and practical application, particularly limiting their operation at room temperature. The introduction of ionic liquids (IL) is expected to solve the above problems. However, the effect of the IL-involved solid-state electrolytes on lithium dendrites suppression has not been clearly revealed and still necessitates in-depth evaluation. In this article, we report an in situ LiF-rich solidelectrolyte interphase (SEI) on the lithium anode triggered by reductive decomposition of IL and Li1.5Al0.5Ge1.5(PO4)3-involved electrolyte. For the first time, the mechanism of SEI formed on Li metal based on IL-based solid-state electrolyte was unveiled. A combination of experimental and computational investigation manifests that the presence of Li1.5Al0.5Ge1.5(PO4)3 promotes the release of fluorine anion from IL, and a SEI layer with high content of LiF can be generated in situ through the reductive decomposition of wandering fluorine anion. Thanks to the high mechanical modulus from Li1.5Al0.5Ge1.5(PO4)3, the symmetric LiLi batteries equipped with synthesized solid-state composite electrolyte (SSCE) exhibit extremely stable Li plating/stripping behavior for more than 2700 h with a small polarization voltage of 50 mV at 0.1 mA cm-2. Moreover, the assembled solidstate LiLiFePO4 batteries based on SSCE could operate steadily for 196 cycles at ambient temperature, with 90.7 capacity retention. These results provide a promising insight into the design of SSCE and realization of room temperature solid-state LMBs with high performance.
机译:全固态电解质为高能量密度的锂金属电池(LMB)的安全运行提供了保障。然而,锂阳极和电解质之间的低离子电导率和巨大的界面阻抗是阻碍其快速发展和实际应用的关键问题,特别是限制了它们在室温下的运行。离子液体(IL)的引入有望解决上述问题。然而,IL参与的固态电解质对锂枝晶抑制的影响尚未明确揭示,仍需深入评估。在本文中,我们报道了由 IL 和 Li1.5Al0.5Ge1.5(PO4)3 参与电解质的还原分解触发的锂阳极上的原位富 LiF 固体电解质界面相 (SEI)。首次揭示了基于IL基固态电解质的Li金属上形成SEI的机理。实验和计算研究相结合表明,Li1.5Al0.5Ge1.5(PO4)3的存在促进了IL中氟阴离子的释放,通过游荡氟阴离子的还原分解,可以原位生成LiF含量高的SEI层。得益于Li1.5Al0.5Ge1的高机械模量。5(PO4)3,配备合成固态复合电解质(SSCE)的对称Li|Li电池在0.1 mA cm-2下具有50 mV的小极化电压,在2700 h以上表现出极其稳定的Li镀/剥离行为。此外,基于SSCE的固态Li|LiFePO4电池在环境温度下可稳定运行196次循环,容量保持率为90.7%。这些结果为SSCE的设计和实现高性能室温固态LMBs提供了有希望的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号