首页> 中文期刊> 《稀有金属:英文版》 >Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li_(0.33)La_(0.557)TiO_(3)nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery

Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li_(0.33)La_(0.557)TiO_(3)nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery

         

摘要

Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic solid electrolytes(ISE)nor solid polymer electrolytes(SPE)alone can meet the operating requirements for room-temperature(RT)all-solid-state lithium metal batteries(ASSLMB).Here,we report a three-dimensional(3D)nanofiber framework reinforced polyethylene oxide(PEO)-based composite polymer electrolytes(CPE)through con-structing a nanofiber framework combining polyacryloni-trile(PAN)and fast Li-ion conductor Li_(0.33)La_(0.557)TiO_(3)(LLTO)framework by electrospinning method.Mean-while,the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti^(4+)in LLTO with lithium metal,thereby avoiding the occurrence of interfacial reactions.Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87×10^(-5)S·cm^(-1)at RT.Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework,especially when the mass of LLTO reaches twice that of the PAN,Li/Li symmetric cell could cycle stably for 1000 h without a short circuit.In addition,under 30℃,the LiFePO_(4)/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g^(-1)at 0.2C and 0.5C,respectively.These results provide a new insight for the development of the next generation of safe,high-perfor-mance ASSLMBs.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号