...
首页> 外文期刊>Medical and Biological Engineering and Computing: Journal of the International Federation for Medical and Biological Engineering >A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.
【24h】

A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.

机译:综述了模拟通过机械心脏瓣膜的流量的最新数值方法。

获取原文
获取原文并翻译 | 示例
           

摘要

In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.
机译:每年有近一半的心脏瓣膜置换手术中,由于其耐用性和使用寿命长,外科医生更喜欢植入双叶机械心脏瓣膜(BMHV)。但是,当前所有的BMHV设计都容易出现血栓栓塞并发症,因此植入物接受者需要接受终身抗凝药物治疗。瓣膜小叶产生的非生理性流型和湍流被认为是导致BMHV植入受者血栓栓塞风险增加的主要原因。在本文中,我们回顾了开发预测性流体-结构相互作用(FSI)算法的最新进展,该算法可以在生理条件下以足够精细的分辨率模拟BMHV流动,从而开始探究血液动力学与血细胞损伤之间的联系。数值模拟提供了对瓣膜小叶下游血细胞所经历的复杂血液动力学环境的第一印象,并首次成功地解决了实验观察到的爆炸性过渡在流动相开始时过渡到湍流状的问题。该模拟还解决了实验观察到的瓣膜运动学的许多微妙特征,例如小叶的不对称打开和关闭以及关闭过程中小叶的反弹。本文还讨论了未来的研究议程,旨在开发功能强大的针对特定患者的计算框架,以优化虚拟手术环境中的瓣膜设计和植入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号