首页> 外文期刊>Mathematics of Control, Signals, and Systems: MCSS >Rational wavelet decompositions of transfer functions in hardy-sobolev classes
【24h】

Rational wavelet decompositions of transfer functions in hardy-sobolev classes

机译:Hardy-Sobolev类中传递函数的有理小波分解

获取原文
获取原文并翻译 | 示例

摘要

The model approximation of transfer functions using rational wavelets (or molecular decompositions) is considered. By using techniques from Hardy-Sobolev spaces it is shown that Hilbert space methods such as a modified matching-pursuit algorithm and least-squares technique can be employed to obtain good approximations in both H~2 and H~∞ norms. Several theoretical results are given on rates of convergence when the methods are applied to delay systems and fractional filters.
机译:考虑使用有理小波(或分子分解)的传递函数模型近似。通过使用来自Hardy-Sobolev空间的技术,表明可以采用希尔伯特空间方法(如改进的匹配追踪算法和最小二乘技术)来获得H〜2和H〜∞范数的良好近似值。当将该方法应用于延迟系统和分数滤波器时,给出了一些关于收敛速率的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号