首页> 外文期刊>Fluid Phase Equilibria >Application of the group contribution concept to Kihara potential for estimating thermodynamic and transport properties Part VI. Heavy globular molecules (SF6, MoF6, WF6, UF6, C(CH3)(4), Si(CH3)(4))
【24h】

Application of the group contribution concept to Kihara potential for estimating thermodynamic and transport properties Part VI. Heavy globular molecules (SF6, MoF6, WF6, UF6, C(CH3)(4), Si(CH3)(4))

机译:将基团贡献概念应用于Kihara势以估算热力学和输运性质第六部分。重球状分子(SF6,MoF6,WF6,UF6,C(CH3)(4),Si(CH3)(4))

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The group contribution concept using spherically symmetric Kihara intermolecular potential is applied to calculate second virial coefficient, dilute gas viscosity and diffusion coefficient for heavy globular molecules: sulfur hexafluoricle SF6, molybdenum hexafluoricle MoF6, tungsten hexafluoricle WF6, uranium hexafluoricle UF6, tetramethyl methane C(CH3)(4), and tetramethyl silane Si(CH3)(4). Kihara potential parameters are determined when second virial coefficient and viscosity data are satisfactorily fitted within experimental uncertainties. in the minimization procedure, each individual molecules itself is treated as a single functional group, namely molecular group, whereas functional groups (CH0, Si-0, CH3) are assigned to tetramethyl molecules (C(CH3)(4,) Si(CH3)(4)). Kihara potential parameters for molecular or functional groups (reduced core radius a*, fit parameters of the potential well depth alpha and beta) are next used to estimate mixture properties: second cross virial coefficient, mixture viscosity, and binary diffusion coefficient. Mixture property predictions are notably improved by adding group binary interaction coefficient k(ij.gc), which are determined by regressing second cross virial coefficient data. Application of the present method indicates that second virial coefficient data are represented with better results than those of the Tsonopoulos correlation, the correlation of Dymond's, group, and the Zarkova and Hohm correlation. Feasibility of the present model to calculate dilute gas viscosity is proved by comparison with the Lucas method and the Zarkova and Hohm correlation. Prediction results of binary diffusion coefficient are in significant agreement with experimental data and are compared well with values obtained by means of the Fuller method. Published by Elsevier B.V.
机译:应用球形对称Kihara分子间势的基团贡献概念来计算重球状分子的第二维里系数,稀气体粘度和扩散系数:六氟化硫SF6,六氟化钼MoF6,六氟化钨WF6,六氟化铀UF6,四甲基甲烷C(CH3 )(4)和四甲基硅烷Si(CH3)(4)。当第二维里系数和粘度数据令人满意地符合实验不确定性时,可确定Kihara电位参数。在最小化过程中,每个分子本身都被视为一个单一的官能团,即分子基团,而官能团(CH0,Si-0,CH3)被分配给四甲基分子(C(CH3)(4,)Si(CH3 )(4))。分子或官能团的Kihara势参数(减小的核半径a *,势阱深度α和β的拟合参数)接下来用于估计混合物性质:第二交叉病毒系数,混合物粘度和二元扩散系数。通过添加通过回归第二交叉维里系数数据确定的组二元相互作用系数k(ij.gc),可以显着改善混合物的性能预测。本方法的应用表明,与维氏相关性,戴蒙德族相关性,基团相关性以及Zarkova和Hohm相关性相比,第二维里系数数据的结果更好。通过与Lucas方法以及Zarkova和Hohm相关性的比较,证明了本模型计算稀薄气体粘度的可行性。二元扩散系数的预测结果与实验数据非常吻合,并且与通过富勒方法获得的值进行了很好的比较。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号