...
首页> 外文期刊>International Journal of Thermophysics >Comparison of Lorentz–Berthelot and Tang–Toennies Mixing Rules Using an Isotropic Temperature-Dependent Potential Applied to the Thermophysical Properties of Binary Gas Mixtures of CH4, CF4, SF6, and C(CH3)4 with Ar, Kr, and Xe
【24h】

Comparison of Lorentz–Berthelot and Tang–Toennies Mixing Rules Using an Isotropic Temperature-Dependent Potential Applied to the Thermophysical Properties of Binary Gas Mixtures of CH4, CF4, SF6, and C(CH3)4 with Ar, Kr, and Xe

机译:使用各向同性随温度变化的势将洛伦兹-贝塞洛特和唐-汤尼混合规则应用于CH4 ,CF4 ,SF6 和C(CH3)的二元混合气的热物理性质的比较)4 与Ar,Kr和Xe

获取原文
获取原文并翻译 | 示例

摘要

In this paper the isotropic temperature-dependent potential (ITDP) approach and the concepts introduced in our previous papers have been used to calculate equilibrium and transport properties of low-density gas mixtures. The twelve binary mixtures considered here are: Ar–CH4, Ar–CF4, Ar–SF6, Ar–C(CH3)4, Kr–CH4, Kr–CF4, Kr–SF6, Kr–C(CH3)4, Xe–CH4, Xe–CF4, Xe–SF6 and Xe–C(CH3)4. The (n−6) Lennard–Jones potential parameters n (repulsive parameter), R m (equilibrium distance), and ɛ (potential well depth) of the pure noble gases Ar, Kr, and Xe are obtained by a minimization of the sum of squared deviations between experimental and calculated viscosity (η), and second pVT (B) and acoustic (β) virial coefficients normalized to their relative experimental error a exp. The number of included experimental points for B, β, η was N = 305, 210, and 167 for Ar, Kr, and Xe, respectively. For the pure globular gases the potential parameters were taken from previous publications. The calculations of B, η, and ρ D 12 of binary mixtures were compared with experimental data by using two different mixing rules (Lorentz–Berthelot and Tang–Toennies). Recommended sets and fitting formulae for the potential parameters that can be used for the calculation of low-pressure thermophysical properties of these mixtures are provided.
机译:在本文中,各向同性的温度相关电位(ITDP)方法和我们先前论文中介绍的概念已用于计算低密度气体混合物的平衡和输运性质。这里考虑的十二种二元混合物是:Ar–CH4 ,Ar–CF4 ,Ar–SF6 ,Ar–C(CH3 )4 ,Kr– CH4 ,Kr–CF4 ,Kr–SF6 ,Kr–C(CH3 )4 ,Xe–CH4 ,Xe–CF4 < / sub>,Xe–SF6 和Xe–C(CH3 )4 。纯稀有气体Ar,Kr和Xe的(n-6)Lennard-Jones势参数n(排斥参数),R m (平衡距离)和ɛ(势阱深度)由下式获得:将实验粘度和计算粘度(η)之间的平方偏差总和最小化,并将第二pVT(B)和声学(β)病毒系数标准化为相对实验误差a exp 。 B,β,η包含的实验点数分别为Ar,Kr和Xe的N = 305、210和167。对于纯球形气体,潜在参数取自以前的出版物。通过使用两种不同的混合规则(Lorentz-Berthelot和Tang-Toennies),将二元混合物的B,η和ρD 12 的计算与实验数据进行了比较。提供了可用于计算这些混合物的低压热物理性质的潜在参数的推荐设置和拟合公式。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号