首页> 外文期刊>Calculus of variations and partial differential equations >Legendrian energy minimizers. Part I: Heisenberg group target
【24h】

Legendrian energy minimizers. Part I: Heisenberg group target

机译:传奇传奇能量最小化器。第一部分:海森堡集团的目标

获取原文
获取原文并翻译 | 示例

摘要

In their joint work [18] Korevaar and Schoen introduced a definition of Sobolev spaces of functions with target in a metric space. This definition is reduced to the traditional one [23] when the metric space is a Riemannian manifold equipped with the geodesic distance, but it has the advantage of being independent from the choice of the isometric embedding of the manifold into an Euclidean space. Another feature of the Korevaar and Schoen's definition is that it allows for a satisfactory existence and regularity theory for energy minimizers whenever the target space has non-positive curvature (in the sense of Alexandrov). See also [14] and [19] for related results. In general, in absence of conditions on the curvature, one does not have neither existence nor regularity of the minimizers.
机译:在他们的共同工作中[18],Korevaar和Schoen引入了Sobolev函数空间的定义,目标空间在度量空间中。当度量空间是配备了测地距离的黎曼流形时,这一定义简化为传统的定义[23],但是它的优点是,与流形等距嵌入欧氏空间的选择无关。 Korevaar和Schoen定义的另一个特征是,只要目标空间具有非正曲率(就Alexandrov而言),它就可以为能量最小化器提供令人满意的存在性和规则性理论。相关结果也请参见[14]和[19]。通常,在没有曲率条件的情况下,既不存在也不存在最小化器的规律性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号