首页> 外文期刊>Graphs and combinatorics >On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles
【24h】

On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles

机译:关于最大度数为6,无4圈的平面图的7个总可着色性

获取原文
获取原文并翻译 | 示例

摘要

Vizing and Behzad independently conjectured that every graph is (Delta + 2)-totally-colorable, where Delta denotes the maximum degree of G. This conjecture has not been settled yet even for planar graphs. The only open case is Delta = 6. It is known that planar graphs with Delta a parts per thousand yen 9 are (Delta + 1)-totally-colorable. We conjecture that planar graphs with 4 a parts per thousand currency sign Delta a parts per thousand currency sign 8 are also (Delta + 1)-totally-colorable. In addition to some known results supporting this conjecture, we prove that planar graphs with Delta = 6 and without 4-cycles are 7-totally-colorable.
机译:Vizing和Behzad独立推测每个图都是(Delta + 2)完全可着色的,其中Delta表示最大G程度。即使对于平面图,该猜想也尚未解决。唯一开放的情况是Delta =6。已知Delta为a千分之一日元9的平面图是(Delta +1)完全可着色的。我们推测,平面图具有4个千分之几的货币符号Delta一个千分之几的货币符号8也是完全可着色的(Delta + 1)。除了支持该猜想的一些已知结果外,我们证明Delta = 6且没有4个循环的平面图是7完全可着色的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号