首页> 外文期刊>Green chemistry >Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production
【24h】

Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production

机译:固定化多酶系统与过氧化氢的合成催化酚类化合物的氧化

获取原文
获取原文并翻译 | 示例

摘要

Suicide inactivation of peroxidases by hydrogen peroxide is the major deterrent to using such biocatalysts in oxidative processes. This has been successfully addressed by the in situ generation of H2O2. In this study, we have developed a novel multi -enzyme biocatalyst that has been immobilized on agarose-type carriers to oxidize phenols using oxygen and formic acid as indirect oxidants. This original system couples the in situ production of H2O2 to the phenol oxidation via an enzymatic cascade that involved three different enzymes (formate dehydrogenase, NADH-oxidase and peroxidase) and two different redox cofactors: nicotinamide and flavin derivatives. The cascade reaction only works when enzymes are immobilized on the solid support since soluble enzymes are dramatically inactivated under the reaction conditions. The highest oxidation efficiency was achieved by combining two different solid biocatalysts: (1) formate dehydrogenase and NADH-oxidase co-immobilized onto agarose beads activated with glyoxyl groups and (2) peroxidase immobilized onto agarose beads as well but activated with boronate groups. Unlike conventional peroxidase-mediated oxidations with exogenous H2O2, this novel system enables the quantitative oxidation of phenol without the addition of H2O2. Furthermore, this novel system can use a broad range of redox cofactors with similar oxidative effectiveness. Therefore, this novel immobilized tri-enzyme system removes important pollutants such as hydroxylated aromatic derivatives (phenol, 4-aminophenol, 2,4-dichloro-phenol or α-naphthol) using formic acid and molecular oxygen as substrates. In addition, this system generates CO2 as waste beyond the oxidized phenols that can be easily separated from the aqueous solution. The sustainability of this system is supported by an E-factor of 1.3 and an atom economy of 43%.
机译:过氧化氢使过氧化物酶的自杀灭活是在氧化过程中使用这种生物催化剂的主要威慑力。原位生成H2O2已成功解决了这一问题。在这项研究中,我们开发了一种新型的多酶生物催化剂,该催化剂已固定在琼脂糖型载体上,使用氧气和甲酸作为间接氧化剂来氧化酚。该原始系统通过酶级联反应将H2O2的原位生成与苯酚氧化偶联,该酶级联反应涉及三种不同的酶(甲酸酯脱氢酶,NADH氧化酶和过氧化物酶)和两种不同的氧化还原辅因子:烟酰胺和黄素衍生物。级联反应仅在酶固定在固相支持物上时起作用,因为可溶性酶在反应条件下会大大失活。通过组合两种不同的固体生物催化剂获得最高的氧化效率:(1)甲酸酯脱氢酶和NADH-氧化酶共固定在乙二醛基团激活的琼脂糖珠上;(2)过氧化物酶也固定在琼脂糖珠上但又被硼酸酯基激活。与传统的过氧化物酶介导的外源性H2O2氧化不同,该新型系统无需添加H2O2就可以定量氧化苯酚。此外,该新颖的系统可以使用具有相似氧化效力的多种氧化还原辅助因子。因此,这种新颖的固定化三酶系统以甲酸和分子氧为底物去除了重要的污染物,例如羟基化的芳香族衍生物(苯酚,4-氨基苯酚,2,4-二氯苯酚或α-萘酚)。此外,该系统产生的CO2作为废物,超过了可以轻易从水溶液中分离出的氧化酚类。该系统的可持续性受到E因子1.3和43%原子经济的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号