...
首页> 外文期刊>Global change biology >Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models
【24h】

Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models

机译:全球陆地生物圈模型的光合能力及其与叶片氮含量的关系定量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Photosynthetic capacity and its relationship to leaf nitrogen content are two of the most sensitive parameters of terrestrial biosphere models (TBM) whose representation in global-scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Here, we use data of qualitative traits, climate and soil to subdivide the terrestrial vegetation into functional types (PFT), and then assimilate observations of carboxylation capacity, Vmax (723 data points), and maximum photosynthesis rates, Amax (776 data points), into the C photosynthesis model proposed by Farquhar et al. to constrain the relationship of [graphic removed] (Vmax normalised to 25 pC) to leaf nitrogen content per unit leaf area for each PFT. In a second step, the resulting functions are used to predict [graphic removed] per PFT from easily measurable values of leaf nitrogen content in natural vegetation (1966 data points). Mean values of [graphic removed] thus obtained are implemented into a TBM (BETHY within the coupled climate-vegetation model ECHAM5/JSBACH) and modelled gross primary production (GPP) is compared with independent observations on stand scale. Apart from providing parameter ranges per PFT constrained from much more comprehensive data, the results of this analysis enable several major improvements on previous parameterisations. (1) The range of mean [graphic removed] between PFTs is dominated by differences of photosynthetic nitrogen use efficiency (NUE, defined as [graphic removed] divided by leaf nitrogen content), while within each PFT, the scatter of [graphic removed] values is dominated by the high variability of leaf nitrogen content. (2) We find a systematic depression of NUE on certain tropical soils that are known to be deficient in phosphorous. (3) [graphic removed] of tropical trees derived by this study is substantially lower than earlier estimates currently used in TBMs, with an obvious effect on modelled GPP and surface temperature. (4) The root-mean-squared difference between modelled and observed GPP is substantially reduced.
机译:光合能力及其与叶氮含量的关系是陆地生物圈模型(TBM)的两个最敏感参数,由于缺乏使用足够广泛的数据库进行的系统分析,严重阻碍了它们在全球规模模拟中的表示。在这里,我们使用定性特征,气候和土壤的数据将陆地植被细分为功能类型(PFT),然后对羧化能力的观测值Vmax(723个数据点)和最大光合速率的观测值Amax(776个数据点)进行同化。 ,由Farquhar等人提出的C光合作用模型中。来限制每个PFT的[图形去除](Vmax标准化为25 pC)与单位叶面积的叶氮含量之间的关系。第二步,使用结果函数根据自然植被中易于测量的叶氮含量值来预测每PFT的[去除的图形](1966年数据点)。将由此获得的[去除的图形]的平均值实施到TBM(耦合气候-植被模型ECHAM5 / JSBACH中的BETHY)中,并将模型化的初级生产总值(GPP)与林分规模上的独立观测值进行比较。除了提供更全面的数据所约束的每个PFT的参数范围外,此分析的结果还可以对以前的参数设置进行几项重大改进。 (1)PFT之间的平均[图形去除]范围由光合氮利用效率的差异(NUE,定义为[图形去除]除以叶片氮含量)决定,而在每个PFT中,[图形去除]的散布叶片氮含量的高变异性决定着这些值。 (2)我们发现某些已知缺乏磷的热带土壤会系统地降低NUE。 (3)通过这项研究得出的热带树木的[去除图形]大大低于目前在TBM中使用的早期估计,对建模的GPP和地表温度有明显影响。 (4)建模和观察到的GPP之间的均方根差大大减少了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号