首页> 外文期刊>European journal of human genetics: EJHG >Structural interpretation of mutations in phenylalanine hydroxylase protein aids in identifying genotype-phenotype correlations in phenylketonuria.
【24h】

Structural interpretation of mutations in phenylalanine hydroxylase protein aids in identifying genotype-phenotype correlations in phenylketonuria.

机译:苯丙氨酸羟化酶蛋白突变的结构解释有助于鉴定苯丙酮尿症的基因型与表型的相关性。

获取原文
获取原文并翻译 | 示例
           

摘要

Phenylalanine hydroxylase (PAH) is the enzyme that converts phenylalanine to tyrosine as a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. Over 300 mutations have been identified in the gene encoding PAH that result in a deficient enzyme activity and lead to the disorders hyperphenylalaninaemia and phenylketonuria. The determination of the crystal structure of PAH now allows the determination of the structural basis of mutations resulting in PAH deficiency. We present an analysis of the structural basis of 120 mutations with a 'classified' biochemical phenotype and/or available in vitro expression data. We find that the mutations can be grouped into five structural categories, based on the distinct expected structural and functional effects of the mutations in each category. Missense mutations and small amino acid deletions are found in three categories: 'active site mutations', 'dimer interface mutations', and 'domain structure mutations'. Nonsense mutations and splicing mutations form the category of 'proteins with truncations and large deletions'. The final category, 'fusion proteins', is caused by frameshift mutations. We show that the structural information helps formulate some rules that will help predict the likely effects of unclassified and newly discovered mutations: proteins with truncations and large deletions, fusion proteins and active site mutations generally cause severe phenotypes; domain structure mutations and dimer interface mutations spread over a range of phenotypes, but domain structure mutations in the catalytic domain are more likely to be severe than domain structure mutations in the regulatory domain or dimer interface mutations.
机译:苯丙氨酸羟化酶(PAH)是将苯丙氨酸转化为酪氨酸的酶,是苯丙氨酸分解代谢以及蛋白质和神经递质生物合成中的限速步骤。在编码PAH的基因中已鉴定出300多种突变,这些突变导致酶活性不足,并导致高苯丙氨酸血症和苯丙酮尿症。现在可以通过测定PAH的晶体结构来确定导致PAH缺乏的突变的结构基础。我们提出了具有“分类”生化表型和/或可用体外表达数据的120个突变的结构基础的分析。我们发现,根据每个类别中突变的独特预期结构和功能效果,它们可以分为五个结构类别。错义突变和小的氨基酸缺失可分为三类:“活性位点突变”,“二聚体界面突变”和“结构域突变”。无意义的突变和剪接突变形成“具有截短和大缺失的蛋白质”的类别。最后一类“融合蛋白”是由移码突变引起的。我们显示结构信息有助于制定一些规则,有助于预测未分类和新发现的突变的可能影响:具有截短和大缺失的蛋白,融合蛋白和活性位点突变通常会导致严重的表型;结构域突变和二聚体界面突变分布在一系列表型上,但催化结构域中的结构域突变比调节域或二聚体界面突变中的结构域突变更严重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号