...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Plasmalemmal VDAC controversies and maxi-anion channel puzzle
【24h】

Plasmalemmal VDAC controversies and maxi-anion channel puzzle

机译:等离子VDAC争议和最大阴离子通道难题

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The maxi-anion channel has been observed in many cell types from the very beginning of the patch-clamp era. The channel is highly conductive for chloride and thus can modulate the resting membrane potential and play a role in fluid secretion/absorption and cell volume regulation. A wide nanoscopic pore of the maxi-anion channel permits passage of excitatory amino acids and nucleotides. The channel-mediated release of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression and physiological/pathophysiological significance, the molecular identity of the maxi-anion channel is still obscure. VDAC is primarily a mitochondrial protein; however several groups detected it on the cellular surface. VDAC in lipid bilayers reproduced the most important biophysical properties of the maxi-anion channel, such as a wide nano-sized pore, closure in response to moderately high voltages, ATP-block and ATP-permeability. However, these similarities turned out to be superficial, and the hypothesis of plasmalemmal VDAC as the maxi-anion channel did not withstand the test by genetic manipulations of VDAC protein expression. VDAC on the cellular surface could also function as a ferricyanide reductase or a receptor for plasminogen kringle 5 and for neuroactive steroids. These ideas, as well as the very presence of VDAC on plasmalemma, remain to be scrutinized by genetic manipulations of the VDAC protein expression. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
机译:从膜片钳时代的开始就已经在许多细胞类型中观察到了最大阴离子通道。该通道对氯化物具有高传导性,因此可以调节静止的膜电位,并在液体分泌/吸收和细胞体积调节中发挥作用。最大值阴离子通道的宽纳米孔允许兴奋性氨基酸和核苷酸通过。这些信号分子的通道介导释放与肾小管肾小球反馈,心脏缺血/缺氧以及脑缺血/缺氧和兴奋性神经变性有关。尽管无处不在的表达和生理/病理生理学意义,但最大阴离子通道的分子身份仍然不清楚。 VDAC主要是线粒体蛋白。但是,有几个小组在细胞表面检测到了它。脂质双层中的VDAC再现了最大阴离子通道的重要生物物理特性,例如宽的纳米孔,对中等高电压的闭合,ATP阻滞和ATP渗透性。但是,这些相似性只是肤浅的,血浆VDAC作为最大阴离子通道的假设无法经受VDAC蛋白表达的遗传操作的检验。细胞表面的VDAC还可以充当铁氰化物还原酶或纤溶酶原kringle 5和神经活性类固醇的受体。这些想法,以及血浆中存在VDAC的情况,仍需通过对VDAC蛋白表达的基因操作来仔细检查。本文是名为“ VDAC结构,功能和线粒体代谢调控”的特刊的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号