...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Plasmalemmal VDAC controversies and maxi-anion channel puzzle
【24h】

Plasmalemmal VDAC controversies and maxi-anion channel puzzle

机译:Plasmalemal vdac争论和Maxi-Anion频道拼图

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The maxi-anion channel has been observed in many cell types from the very beginning of the patch-clamp era. The channel is highly conductive for chloride and thus can modulate the resting membrane potential and play a role in fluid secretion/absorption and cell volume regulation. A wide nanoscopic pore of the maxi-anion channel permits passage of excitatory amino acids and nucleotides. The channel-mediated release of these signaling molecules is associated with kidney tubuloglomerular feedback, cardiac ischemia/hypoxia, as well as brain ischemia/hypoxia and excitotoxic neurodegeneration. Despite the ubiquitous expression and physiological/pathophysiological significance, the molecular identity of the maxi-anion channel is still obscure. VDAC is primarily a mitochondrial protein; however several groups detected it on the cellular surface. VDAC in lipid bilayers reproduced the most important biophysical properties of the maxi-anion channel, such as a wide nano-sized pore, closure in response to moderately high voltages, ATP-block and ATP-permeability. However, these similarities turned out to be superficial, and the hypothesis of plasmalemmal VDAC as the maxi-anion channel did not withstand the test by genetic manipulations of VDAC protein expression. VDAC on the cellular surface could also function as a ferricyanide reductase or a receptor for plasminogen kringle 5 and for neuroactive steroids. These ideas, as well as the very presence of VDAC on plasmalemma, remain to be scrutinized by genetic manipulations of the VDAC protein expression. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
机译:从贴片钳位时代的一开始就在许多细胞类型中观察到了Maxi-Anion信道。该通道对于氯化物是高导电的,因此可以调节静止膜电位并在流体分泌/吸收和细胞体积调节中起作用。最大阴离子通道的宽纳米镜孔允许通过兴奋性氨基酸和核苷酸通过。这些信号传导分子的通道介导的释放与肾小管间反馈,心脏缺血/缺氧以及脑缺血/缺氧和兴奋性神经变性相关。尽管存在普遍存在的表达和生理/病理生理学意义,但Maxi-Anion频道的分子标识仍然模糊不清。 Vdac主要是线粒体蛋白质;然而,几组在蜂窝表面上检测到它。脂质双层的VDAC再现最大阴离子通道的最重要的生物物理特性,例如宽纳米孔,响应于中等高电压,ATP嵌段和ATP渗透性的宽度。然而,这些相似之处已经呈现出肤浅,并且Plasmalemmal VDAC的假设,因为Maxi-Anion通道没有通过Vdac蛋白表达的遗传操作来承受测试。蜂窝状表面上的VDAC也可以用作铁氰化物还原酶或纤溶酶原Kringle 5的受体和神经活性类固醇。这些思想以及VDAC对等离离子体的存在仍然是通过VDAC蛋白表达的遗传操纵来仔细审查。本文是标题的特殊问题的一部分:VDAC结构,功能和线粒体新陈代谢的调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号