首页> 外文期刊>EPL >Link prediction in complex networks: A local na?ve Bayes model
【24h】

Link prediction in complex networks: A local na?ve Bayes model

机译:复杂网络中的链接预测:本地朴素贝叶斯模型

获取原文
获取原文并翻译 | 示例

摘要

The common-neighbor-based method is simple yet effective to predict missing links, which assume that two nodes are more likely to be connected if they have more common neighbors. In the traditional method, each common neighbor of two nodes contributes equally to the connection likelihood. In this letter, we argue that different common neighbors may play different roles and thus contributes differently, and propose a local nave Bayes model. Extensive experiments were carried out on nine real networks. Compared with the traditional method, the present method can provide more accurate predictions.
机译:基于公共邻居的方法简单但有效地预测了丢失的链接,该方法假定两个节点如果有更多公共邻居,则更有可能被连接。在传统方法中,两个节点的每个公共邻居对连接可能性的贡献均等。在这封信中,我们认为不同的共同邻居可能扮演不同的角色,因此做出不同的贡献,并提出了一个本地中殿贝叶斯模型。在九个真实的网络上进行了广泛的实验。与传统方法相比,本方法可以提供更准确的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号