首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins.
【24h】

Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins.

机译:酿酒酵母的电融合巨原生质体作为膜蛋白电生理研究的新系统。

获取原文
获取原文并翻译 | 示例
           

摘要

Giant protoplasts of Saccharomyces cerevisiae of 10-35 microm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and "patchability" of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1-12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66+/-0.07 microF/cm(2)) and conductance (23-44 microS/cm(2)) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels.
机译:通过多细胞电融合产生直径为10-35微米的酿酒酵母的巨型原生质体。因此,评估了两种不同的制备策略,重点是电融合原生质体的大小分布和“可修补性”。通常,亲本原生质体适合于分离后1-12小时进行电融合。电融合巨原生质体的电生理特性可以通过全细胞膜片钳技术进行分析。巨型原生质体的比表面积膜电容(0.66 +/- 0.07 microF / cm(2))和电导(23-44 microS / cm(2))与亲本原生质体的相应数据一致。用荧光素填充的移液管进行的测量可以排除质膜对巨大原生质体的任何内部区室化,因为仅在全细胞配置中观察到了均匀的(扩散控制)染料吸收,而在细胞附着的形成中却观察不到。原生质体电融合表达与黄色荧光蛋白(YFP)连接的光活化阳离子通道Channelrhodopsin-2(ChR2)的原生质体后,在巨细胞内部未观察到质膜相关的荧光,进一步证实了巨质原生质体的均质结构。 )。异源表达的ChR2-YFP的膜片钳分析显示了电融合巨原生质体和亲本原生质体的典型蓝光依赖性,内向电流。最重要的是,电场处理既不会改变通道特性,也不会改变通道表达密度。综上所述,多细胞电融合显着增加了膜片钳实验中可及的膜蛋白的绝对数量,因此推测为低信号转运蛋白和通道的生物物理研究提供了方便的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号