...
【24h】

Optimal design of preform shape based on EFA-FEM-GA integrated methodology

机译:基于EFA-FEM-GA集成方法的瓶坯形状优化设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Preform shape design for complex forging is an important and intractable aspect in the design of forging process. This paper presents an integrated methodology based on elliptic Fourier analysis (EFA), finite element method (FEM) and genetic algorithms (GA) to determine optimal preform shape. Firstly, an elliptic Fourier analysis, which has the advantages of wide versatility and short design cycle, is adopted as the transformation rule for the first time in this paper. The similarity between elliptic Fourier analysis and plastic forming process is demonstrated theoretically. Meanwhile, the main steps for using elliptic Fourier analysis module to design preform shape are introduced: two-dimensional slice, elliptic Fourier analysis and three-dimensional reconstruction. The preform shapes generated by elliptic Fourier analysis module can be simulated directly in finite element method module. Next, in order to control the deformation amount and material distribution of preform, two sets of design parameters, i.e., shape factor and triaxial scaling factors, are employed to control the preform shape before entering the finite element method module simulation. Then, these design parameters are optimized using the genetic algorithm module. Finally, taking a heavy forging with complex shapes as an example, its optimized design scheme is carried out in real forging production. The results show that the forging is produced without problems of crack, folds, underfilling and unreasonable flash distribution, which validates the effectiveness of the presented methodology. Furthermore, this integrated methodology could be extended to other complex forgings.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号