首页> 外文期刊>International Journal of Quantum Chemistry >Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation
【24h】

Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation

机译:激动剂烷基尾巴与大麻素CB1受体V6.43 / I6.46沟的相互作用诱导了螺旋6的活性构象

获取原文
获取原文并翻译 | 示例
           

摘要

Our modeling studies have suggested that branched amino acids Val, Ile, or Thr located (i, i + 3) or (i, i + 4) apart on an alpha helix can form a groove into which a ligand alkyl chain can fit. Experimental support for this idea comes from the crystal structure of adipocyte lipid binding protein complexed with stearic acid (Xu et al. J Biol Chem 1993, 268, 7874). We hypothesized that the transmembrane helix 6 (TMH 6) betaXXbeta motif of the CB1/CB2 receptors (V6.43/I6.46), which immediately precedes the conserved TMH 6 CWXP motif, serves as an interaction site for the alkyl tail of cannabinoid (CB) ligands and that interaction with this motif may trigger receptor activation. Conformational memories (CM) calculations on TMH 6 of CB1 and CB2 were used to explore the conformation of TMH 6 in unbound and complexed states. The conserved Pro 6.50 generated a kink in the alpha-helical structure that behaved as a flexible hinge. In the context of a three-dimensional model of the CB1 receptor, a helix from the more kinked family of CB1 TMH 6 conformers calculated by CM brought the intracellular portion of TMH 6 in proximity to TMH 3, analogous to the inactive state TMH 3/6 conformation seen in the X-ray crystal structure of rhodopsin (Palezewski et al. Science 2000, 289, 739). A CM study of CB 1 TMH 6 in which a pentane molecule (as a model system for the CB ligand side chain) interacts with the V6.43/I6.46 groove was also conducted. The results of this calculation showed that alkyl chain interaction with the V6.43/I6.46 groove directly modulates the overall conformation of TMH 6, biasing the population of TMH 6 conformers toward the family of less kinked CB1 TMH 6 conformations calculated by CM. In the context of the CB1 bundle, this conformational change would cause the intracellular end of TMH 6 to move away from TMH 3. Such a movement is consistent with recent experimental results for agonist induced conformational changes at the intracullular side of TMH 6 in the beta(2)-adrenergic receptor (Jensen et al. J Biol Chem 2001, 276, 9279). In contrast to results for CB1, CB2 TMH 6 showed a smaller range of kink angles possible for unbound TMH 6, with no significant shift in the populations of TMH 6 when the V6.43/I6.46 groove was occupied by pentane. We hypothesized that the profound flexibility differences between wild-type (WT) CB1 vs. WT CB2 TMH 6 revealed by CM calculations may be due to the size of residue 6.49 which immediately precedes P6.50 of the CWXP motif (G6.49 in WT CB1 and F6.49 in WT CB2). To test this hypothesis, using CM, we compared the flexibilities of WT CBI and CB2 TMH 6 with those of the switch mutants, CB1 G6.49F and CB2 F6.49G. Consistent with results reported above, tile degree of kinking (average of 100 conformers) was distinctly different between CB 1 (40.9degrees; std. dev. +/-16.9degrees) and CB2 (24.6degrees; std. dev +/-4.3degrees), with CB1 TMH 6 exhibiting a noticeably wider range of kink angles than CB2. These flexibilities were essentially switched in the mutants [CB1 G6.49F mutant (25.3degrees; std. dev, +/-5.7degrees) and a CB2 F6.49G mutant (44.3degrees; std. dev. +/-21.4degrees)]. Taken together, these results suggest that TMH 6 in CBI, but not in CB2, is sensitive to conformational modulation by an alkyl chain bound in the V6.43/I6.46 groove. Furthermore, results suggest that the small size of residue 6.49 in CB1 facilitates the P6.50 flexible hinge motion of CBI TMH 6. (C) 2002 Wiley Periodicals, Inc. [References: 33]
机译:我们的模型研究表明,位于α螺旋上的(i,i + 3)或(i,i + 4)分开的支链氨基酸Val,Ile或Thr可以形成一个槽,配体烷基链可以插入该槽中。这种想法的实验支持来自与硬脂酸复合的脂肪细胞脂质结合蛋白的晶体结构(Xu等人,J Biol Chem 1993,268,7874)。我们假设CB1 / CB2受体(V6.43 / I6.46)的跨膜螺旋6(TMH 6)betaXXbeta基序,它紧接在保守的TMH 6 CWXP基序之前,充当大麻素烷基尾巴的相互作用位点(CB)配体,并且与该基序的相互作用可能触发受体激活。 CB1和CB2的TMH 6的构象记忆(CM)计算用于探索未结合和复杂状态下TMH 6的构象。保守的Pro 6.50在α螺旋结构中产生了一个类似于挠性铰链的扭结。在CB1受体的三维模型的背景下,通过CM计算得出的来自更弯曲的CB1 TMH 6构象家族的螺旋使TMH 6的细胞内部分接近TMH 3,类似于非活动状态TMH 3 /在视紫红质的X射线晶体结构中观察到6个构象(Palezewski等,Science 2000,289,739)。还进行了CB 1 TMH 6的CM研究,其中戊烷分子(作为CB配体侧链的模型系统)与V6.43 / I6.46凹槽相互作用。该计算的结果表明,烷基链与V6.43 / I6.46凹槽的相互作用直接调节了TMH 6的总体构象,使TMH 6构象体群体偏向由CM计算的较不弯曲的CB1 TMH 6构象族。在CB1束的情况下,这种构象变化将导致TMH 6的细胞内末端从TMH 3移开。这种移动与激动剂诱导的β内TMH 6的胞内侧构象变化的最新实验结果一致。 (2)-肾上腺素能受体(Jensen et al.J Biol Chem 2001,276,9279)。与CB1的结果相反,CB2 TMH 6显示出未结合的TMH 6可能存在较小的扭结角范围,而当V6.43 / I6.46沟槽被戊烷占据时,TMH 6的种群没有明显变化。我们假设,通过CM计算揭示的野生型(WT)CB1与WT CB2 TMH 6之间的巨大灵活性差异可能是由于残基6.49的大小所致,该残基紧接在CWXP基序的P6.50(WT中的G6.49 WT CB2中的CB1和F6.49)。为了验证这一假设,我们使用CM将WT CBI和CB2 TMH 6的灵活性与转换突变体CB1 G6.49F和CB2 F6.49G的灵活性进行了比较。与上面报告的结果一致,CB 1(40.9度;标准差+/- 16.9度)和CB2(24.6度;标准差+/- 4.3度)之间的扭曲度(平均100个构象异构体)明显不同。 ),而CB1 TMH 6的弯折角范围比CB2宽得多。这些灵活性基本上在突变体中切换[CB1 G6.49F突变体(25.3度;标准偏差,+ /-5.7度)和CB2 F6.49G突变体(44.3度;标准偏差+/- 21.4度)] 。两者合计,这些结果表明CBI中的TMH 6,而不是CB2中的TMH 6,对结合在V6.43 / I6.46凹槽中的烷基链的构象调制敏感。此外,结果表明,CB1中残留物6.49的小尺寸促进了CBI TMH 6的P6.50柔性铰链运动。(C)2002 Wiley Periodicals,Inc. [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号