...
首页> 外文期刊>International Journal of Fracture >Three-dimensional asymptotic stress field in the vicinity of the line of intersection of a circular cylindrical through/part-through open/rigidly plugged hole and a plate
【24h】

Three-dimensional asymptotic stress field in the vicinity of the line of intersection of a circular cylindrical through/part-through open/rigidly plugged hole and a plate

机译:圆柱贯通/部分贯通的开孔/刚性塞孔与板的相交线附近的三维渐近应力场

获取原文
获取原文并翻译 | 示例

摘要

Heretofore unavailable asymptotic solutions to a class of problems pertaining to the stress fields in the neighborhood of the circumferential corner line or line of intersection of a circular cylindrical through or part-through (embedded) open or rigidly plugged hole and a bounding or interior surface of an isotropic plate, subjected to far-field extension-bending (mode I), inplane shear-twisting (mode II) and torsional (mode III) loadings, are presented. A local orthogonal curvilinear coordinate system (rho, PHI, theta), is selected to describe the local deformation behavior of the afore-mentioned plate in the vicinity of the afore-mentioned circumferential corner line. One of the components of the Euclidean metric tensor, namely g33, is approximated (rho/a 1) in the derivation of the kinematic relations and the ensuing governing system of three partial differential equations. Nine different combinations of boundary conditions are considered, five of which relate to a through hole or infinitely rigid inclusion, while the remaining four pertain to a part-through (embedded) hole or infinitely rigid inclusion. Numerical results presented include the effect of Poisson's ratio, wherever applicable, on the computed lowest eigenvalue(s).
机译:迄今为止,对于与圆周通角线或圆柱形直通孔或部分直通(嵌入)开孔或刚性塞孔与圆柱的边界或内表面的交点附近的应力场有关的一类问题,没有可用的渐近解。提出了各向同性板,它们经受了远场延伸弯曲(模式I),面内剪切扭曲(模式II)和扭转(模式III)载荷。选择局部正交曲线坐标系(rho,PHI,θ),以描述在上述圆周角线附近的上述板的局部变形行为。在运动关系的推导和随后的三个偏微分方程的控制系统中,欧氏度量张量的一个分量即g33近似(rho / a 1)。考虑了9种不同的边界条件组合,其中5种涉及通孔或无限刚性夹杂物,其余4种涉及部分贯通(嵌入)孔或无限刚性夹杂物。给出的数值结果包括泊松比(在适用情况下)对计算出的最低特征值的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号