首页> 外文期刊>International Journal of Chemical Kinetics >Time-of-Flight Mass Spectrometry for Time-Resolved Measurements: Some Developments and Applications
【24h】

Time-of-Flight Mass Spectrometry for Time-Resolved Measurements: Some Developments and Applications

机译:用于时间分辨测量的飞行时间质谱:一些发展和应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the time resolution for kinetic studies of reactions with mass spec-trometric detection is characterized in detail, and it is shown how this allows faster kinetic processes to be determined. The time-resolved technique used pulsed laser photolysis to initiate reaction and a time-of-flight mass spectrometer (TOFMS) to monitor progress, where the reactant gas was sampled by a sampling orifice and photoionized using pulsed, laser vacuum ultraviolet light before being analyzed by the TOFMS. Characterization of this setup has been carried out to identify the parameters that affect the time for "sampling," which limits the fastest reactions that can be measured. A simple mathematical equation has been developed to correct for "sampling" delays (k_(ampling) ~ 25,000 s~(-1)), which extends the range of rate coefficients to be measured in a kinetic mass spectrometry reactor to k' < 7000 s~(-1). This method could be applied to any other kinetic mass spectrometry system where k_(sampling) can be measured; an important advantage since it allows the study of reactions over a wider range of conditions (e.g., larger concentrations of reagents/products can be used to minimize the contribution from wall losses). The system can produce reliable kinetic data whether monitoring reactant decay or product growth evert when the reaction and sampling processes are occurring on a similar timescale (k' < 7000 s~(-1) ). Reproducible and reliable kinetic data have been obtained for the following reactions: SO + NO2→ products (R1), ClSO + NO2 → products (R2), where SO and ClSO were monitored under pseudo-first-order conditions, and HCO + O2 → CO + HO2 (R3), where CO was monitored by a (1 + 1) resonance enhanced ionization multiphoton ionization (REMPI) scheme with HCO reacting under pseudo-first-order conditions. The limitations and potential developments of this setup are described.
机译:在本文中,详细描述了使用质谱检测进行反应动力学研究的时间分辨率,并显示了如何确定更快的动力学过程。时间分辨技术使用脉冲激光光解来引发反应,并使用飞行时间质谱仪(TOFMS)来监视进度,其中通过采样孔对反应气体进行采样,并在进行分析之前使用脉冲激光真空紫外光将其离子化通过TOFMS。已经进行了该设置的表征,以识别影响“采样”时间的参数,这限制了可以测量的最快反应。已开发出一个简单的数学方程式来校正“采样”延迟(k_(采样)〜25,000 s〜(-1)),该方程将在动力学质谱反应器中测量的速率系数的范围扩展到k'<7000 s〜(-1)。该方法可以应用于可以测量k_(采样)的任何其他动力学质谱系统。这是一个重要的优势,因为它可以在更宽的条件范围内研究反应(例如,可以使用更高浓度的试剂/产品来最小化壁损失的影响)。当反应和采样过程在相似的时间范围内(k'<7000 s〜(-1))发生时,该系统可以生成可靠的动力学数据,无论是监测反应物的衰减还是产物的生长。已获得以下反应的可再现且可靠的动力学数据:SO + NO2→产物(R1),ClSO + NO2→产物(R2),其中SO和ClSO在伪一阶条件下进行监测,HCO + O2→ CO + HO2(R3),其中的CO通过(1 + 1)共振增强电离多光子电离(REMPI)方案进行监控,HCO在伪一级条件下反应。描述了此设置的局限性和潜在的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号